Abstract:
A method and an apparatus for determining a status of a network device are provided. A warning analysis device obtains a plurality of pieces of target key performance indicator KPI data of the network device within preset duration, processes the plurality of pieces of target KPI data to generate an element, forms the feature vector by using generated elements corresponding to the plurality of pieces of feature information, and analyzes the feature vector based on a preset warning analysis model, to determine the status of the network device. In this way, the status of the network device is determined by analyzing a plurality of pieces of target KPI data within a period of time, instead of by using only data at a moment. This improves the accuracy of determining the network device, so as to reduce an omission of a warning.
Abstract:
A method and a device for realizing an optical channel data unit (ODU) shared protection ring (SPRing) are disclosed. The method includes: first, receive an ODUj, wherein the ODUj carries an ODUi; then, perform de-multiplexing processing to obtain the ODUi from the ODUj; next, multiplex the ODUi to an optical channel data unit k (ODUk); meanwhile, keep monitoring the ODUk; and when the monitoring result that is obtained through monitoring the ODUk indicates that a failure has occurred, perform a switching on the ODUi; wherein i, j, k are integers equal to or larger than 0, k is larger than j, j is larger than i, and i, j, k are used to indicate different rates of respective optical channel data unit (ODU) signals.
Abstract:
The disclosures provide a method and apparatus for transmitting and receiving interface signals of a distributed base station. At least one channel of Common Public Radio Interface (CPRI) signals of a distributed base station are encapsulated into optical transport unit x (OTUx) signals in a frame structure of OTUx by adopting Generic Mapping Procedure (GMP) mapping scheme, wherein the x represents a transmission capacity and wherein the OTUx is adopted for providing a bandwidth required by the at least one channel of CPRI signals, and then the OTUx signals that bear the at least one channel of CPRI signals are sent.
Abstract:
This application discloses a network fault analysis method and apparatus. The method includes: obtaining information about a first abnormal event and information about a second abnormal event; determining first fault cause description information and second fault cause description information respectively based on the information about the first abnormal event and the information about the second abnormal event, where each of the first and the second fault cause description information is used to describe a cause of occurrence of a corresponding abnormal event; and determining, based on event identifiers in the information about the first and the second abnormal events, and the first and the second fault cause description information, that the first abnormal event corresponding to the first fault cause description information is a cause event that causes occurrence of the second abnormal event corresponding to the second fault cause description information.
Abstract:
A fault localization method and device are provided. The method includes: obtaining user experience data, network topology data, and resource management data that are of a video service; where the network topology data is used to represent a connection relationship between network devices, and the resource management data is used to represent a connection relationship between user equipment and the network devices; determining a quality of experience (QoE) experience indicator of a network device based on the user experience data, the network topology data, and the resource management data; and when quality of experience represented by the QoE experience indicator of the network device is lower than quality of experience represented by a device screening threshold, determining the network device as a possible questionable device. According to the embodiments of the present invention, accuracy of fault localization is high.
Abstract:
A method and a device for realizing an optical channel data unit (ODU) shared protection ring (SPRing) are disclosed. The method includes: first, receive an ODUj, wherein the ODUj carries an ODUi; then, perform de-multiplexing processing to obtain the ODUi from the ODUj; next, multiplex the ODUi to an optical channel data unit k (ODUk); meanwhile, keep monitoring the ODUk; and when the monitoring result that is obtained through monitoring the ODUk indicates that a failure has occurred, perform a switching on the ODUi; wherein i, j, k are integers equal to or larger than 0, k is larger than j, j is larger than i, and i, j, k are used to indicate different rates of respective optical channel data unit (ODU) signals.
Abstract:
A method and a device for realizing an optical channel data unit (ODU) shared protection ring (SPRing) are disclosed by the present invention. The method includes: first, receive an ODUj, wherein the ODUj carries an ODUi; then, perform de-multiplexing processing to obtain the ODUi from the ODUj; next, multiplex the ODUi to an optical channel data unit k (ODUk); meanwhile, keep monitoring the ODUk; and when the monitoring result that is obtained through monitoring the ODUk indicates that a failure has occurred, perform a switching on the ODUi; wherein i, j, k are integers equal to or larger than 0, k is larger than j, j is larger than i, and i, j, k are used to indicate different rates of respective optical channel data unit (ODU) signals.
Abstract:
The embodiments of the present invention disclose methods and apparatuses for mapping processing and de-mapping processing in an optical transport network. A Lower Order Optical Channel Data Unit (LO ODU) signal is mapped into a payload area of an Optical Channel Data Tributary (ODTU) signal in units of M bytes. M is equal to the number of tributary slots of a Higher Order Optical Channel Payload Unit (HO OPU) that are to be occupied by the ODTU signal, and M is an integer larger than 1. Overhead information is encapsulated to an overhead area of the ODTU signal. Thereafter, the ODTU signal is multiplexed into the HO OPU. In this way, an efficient and universal mode for mapping the LO ODU to the HO OPU is provided.
Abstract:
A method and a device for realizing an optical channel data unit (ODU) shared protection ring (SPRing) are disclosed by the present invention. The method includes: first, receive an ODUj, wherein the ODUj carries an ODUi; then, perform de-multiplexing processing to obtain the ODUi from the ODUj; next, multiplex the ODUi to an optical channel data unit k (ODUk); meanwhile, keep monitoring the ODUk; and when the monitoring result that is obtained through monitoring the ODUk indicates that a failure has occurred, perform a switching on the ODUi; wherein i, j, k are integers equal to or larger than 0, k is larger than j, j is larger than i, and i, j, k are used to indicate different rates of respective optical channel data unit (ODU) signals.
Abstract:
Embodiments of this application provide a method and an apparatus for obtaining optical distribution network (ODN) logical topology information, a device, and a storage medium. The method includes: obtaining identification information of each first ONU that is connected to a first passive optical network (PON) port and whose optical path changes and feature data of the first ONU in a first time window, where the feature data includes receive optical power and/or an alarm event; obtaining, based on the feature data of each first ONU, a feature vector corresponding to each first ONU; and performing cluster analysis on the feature vector corresponding to each first ONU, to obtain topology information corresponding to the first PON port. ONU topology information is obtained by analyzing an ONU feature.