Abstract:
In the case of a spinning machine having several spinning stations for the spinning of slivers into yarns, the slivers are transported from cans to the spinning stations by transport devices which comprise transport belts. The transport belts are provided with tension inserts which are covered by the closed smooth lateral edges of the basic material of the transport belts.
Abstract:
In the case of a spinning or twisting spindle having a spindle shaft which is disposed in a spindle bearing housing by means of a bolster and a step bearing, it is provided that the spindle bearing housing is surrounded by a sleeve-type housing which is connected with the bottom of the spindle bearing housing by way of an elastic connecting element which forms a point of discontinuity for the flow of structure-borne sound. In addition, it is provided that the space between the spindle bearing housing and the outer housing is filled with a viscous medium up to at least two-thirds of the height of the spindle bearing housing.
Abstract:
In the case of an air nozzle for pneumatic false-twist spinning having a yarn channel formed of at least two segments and having at least one compressed-air duct leading into the yarn channel, it is provided that for the formation of each compressed-air duct, a groove is worked into one of the segments that is open in the direction of the contact of the other segment and that is covered by the segment that follows. To accommodate selective changes in the compressed air duct configuration the segments are replaceable parts that are clamped by screw threaded nozzle housing parts.
Abstract:
A spindle for spinning or twisting machines comprises a rigid inner sleeve which contains a neck bearing and a step bearing for a rotatably supported shaft and which inner sleeve is accommodated in a bearing housing, the bearing housing being fixed to a spindle rail. The inner sleeve is supported against the bearing housing by two radially symmetrical acting metal springs. The spring rate of the metal spring which faces the neck bearing amounts to at least five times and at most twenty times the spring rate of the metal spring facing the step bearing. The ring space between the inner sleeve and the bearing housing is filled with a highly viscous fluid. The inner sleeve is closed off against the ring space with an oilproof seal.
Abstract:
In the case of a process for stopping and restarting a machine for pneumatic false-twist spinning, it is provided that the start-up time and the slow-down time of the main motor are controlled to preselected values, so that the switching-on and switching-off operations for air nozzles may take place as a corresponding function.
Abstract:
In the case of a spindle for spinning or twisting machines, two housings, separated by an annular gap, are provided, namely an outer housing, secured to a spindle rail, and an inner housing which takes up the neck bearing and the step bearing for the shaft by means of supporting parts. The inner housing is connected to a supporting portion by a flexible joining piece, which supporting portion is adjustable and clampable onto the bottom surface of the outer housing. The bottom surface takes at least approximately the shape of a ball cup, whose center point is at most 30 mm away from the upper edge of the outer housing in vertical direction.
Abstract:
A spinning or twisting bearing assembly for supporting a spinning or twisting shaft is disclosed. The bearing assembly includes a spindle shaft neck bearing having roller bodies engageable with the spindle shaft at a first axial location above a step bearing assembly for supporting the bottom end of the spindle shaft. The neck bearing and step bearing assembly are disposed in a bearing housing. An outer housing is disposed to surround the bearing housing with an annular gap therebetween along a substantial length of the bearing housing. The outer housing is fixedly clamped to a spindle rail. In order to isolate sound causing vibrations from the roller bodies of the neck bearing, the bearing housing is clamped to the outer housing only at a position below the bearing housing. In use, vibrations from the roller bodies are then transmitted only indirectly to the spindle rail by way of the bearing housing, the connection of the bearing housing to the outer housing at the bottom of the bearing housing, and the out of the upper housing to the clamp bearing housing at the spindle rail.
Abstract:
A bearing assembly for a spinning or twisting spindle shaft is provided which includes at least one support bearing device for supporting a shaft. A lubricant feeding and discharging duct member is provided for feeding and discharging lubricant to and from the support bearing device. The lubricant feeding and discharging duct member includes an outlet discharging member for discharging lubricant out of a bearing housing.
Abstract:
The spinning rotors of open-end spinning aggregates are supported on supporting discs. For the purposes of non-contact revolution counting, a front side of a supporting disc is provided with at least one permanent magnet. A signal receiver of a maintenance device selectively arrangeable at the spinning aggregates is arranged at the permanent magnet. The distance between the permanent magnet and the signal receiver is bridged by a ferromagnetic information transmitter, which is preferably arranged on a swivelling housing section of the spinning aggregate.
Abstract:
A spindle for a spinning or twisting machine includes a step bearing sleeve which is supported in a damping tube. The damping tube is arranged, with clearance from an oil filled damping gap, free floating and radially movable in a bearing housing. The damping gap has preferably a gap width of 0.2 mm to 0.4 mm. The damping tube is provided with radial bore holes, which connect the damping gap with the area of the step bearing sleeve. In spite of even the smallest radial movements of the damping tube, a hydraulic damping as well as a hydraulic centering is possible.