摘要:
A device and method for orbit prediction of satellites are provided. An accelerometer measures non-gravity forces acting on a satellite. A processor receives measured non-gravity forces from the accelerometer, estimates the contributions of the measured non-gravity forces to the movement of the satellite, and predicts the orbit of the satellite based on the estimated contributions of the non-gravity forces to the movement of the satellite.
摘要:
The invention includes a process for one's own global navigation satellite system and at least one other global navigation satellite system including the following: Receiving ranging signals and navigation messages or ranging signals only from the at least one other global navigation satellite system, and processing the received ranging signals and navigation messages in a similar way as the ranging signals and navigation messages of the owned global navigation satellite system.
摘要:
The invention relates to an apparatus for a regional or global navigation satellite system that includes an arrangement for receiving additional data or navigation messages from the navigation satellite system, and an arrangement for informing or alarming the user that critical atmospheric conditions occur, whereby the additional data or the navigation messages include atmospheric information.
摘要:
The invention includes a process for one's own global navigation satellite system and at least one other global navigation satellite system including the following: Receiving ranging signals and navigation messages or ranging signals only from the at least one other global navigation satellite system, and processing the received ranging signals and navigation messages in a similar way as the ranging signals and navigation messages of the owned global navigation satellite system.
摘要:
The invention relates to an apparatus for a regional or global navigation satellite system that includes an arrangement for receiving additional data or navigation messages from the navigation satellite system, and an arrangement for informing or alarming the user that critical atmospheric conditions occur, whereby the additional data or the navigation messages include atmospheric information.
摘要:
Methods and apparatus for implementing a receiver autonomous integrity monitoring (RAIM) algorithm are provided. The RAIM algorithm is for determining an integrity risk in a global navigation satellite system (GNSS) by processing several ranging signals received from satellites of the GNSS. The algorithm involves determining several integrity risks at an alert limit for different fault conditions of the ranging signals, and determining an overall integrity risk at the alert limit from the determined several integrity risks.
摘要:
A method for transmitting additional information in a satellite navigation system includes providing a navigation message having a plurality of parameters, selecting at least one parameter from the plurality of parameters for the transmitting of the additional information, replacing the at least one parameter, at least partially, by the additional information so as to form a changed navigation message, and sending the changed navigation message.
摘要:
Methods and apparatus for implementing a receiver autonomous integrity monitoring (RAIM) algorithm are provided. The RAIM algorithm is for determining an integrity risk in a global navigation satellite system (GNSS) by processing several ranging signals received from satellites of the GNSS. The algorithm involves determining several integrity risks at an alert limit for different fault conditions of the ranging signals, and determining an overall integrity risk at the alert limit from the determined several integrity risks.
摘要:
For integrity communication, a navigation satellite system has a space segment with satellites that emit navigation signals for reception and analysis by user systems, and a ground segment with observation stations that monitor the satellites. The ground segment controls cause distribution of integrity information concerning the satellites to user systems with the navigation signals. The integrity information has a first SISMA value and a second broadcast SISMA value for the accuracy of the satellite monitored by the ground segment. The second broadcast SISMA value takes into account a failure of an observation station of the ground segment, and a threshold value for the second broadcast SISMA value is provided. The threshold value with the integrity information for a satellite is transmitted instead of the second broadcast SISMA value when the latter exceeds the threshold value and the first SISMA value is lower than the threshold value for the satellite. The integrity information to be transmitted when the second broadcast SISMA value and the first SISMA value for the satellite each exceed the threshold value.
摘要:
A method for monitoring the integrity of satellite navigation system includes a first detection of integrity problems, in which the same entity of a navigation signal from a particular satellite is received at different sites, and evaluated to estimate the error of the entity and the error made during the error estimation process. In a second detection, navigation signals received from a specific satellite are measured and evaluated to estimate the error of the entity and the error in the error estimation process. Finally, in a third detection, several navigation signals from different satellites are measured, and evaluated to estimate the error of the entity and the error made in the error estimation process. Integrity problems which are detectable in the first and second detections are taken into account only if it is probable that they occur during the third detection, and have not been discovered during the first and second detection.