摘要:
A method for transferring a pattern through a photoresist layer in the fabrication of submicron semiconductor devices structures is disclosed. A photoresist is provided on a substrate and the same is imagewise exposed with a desired pattern to form exposed and unexposed patterned areas in the top surface of the photoresist. The photoresist is then baked to form cross-linked regions in the exposed pattern areas of the photoresist. Silylation is then performed to incorporate silicon into the unexposed patterned areas of the photoresist, wherein some incorporation of silicon occurs in the exposed patterned crosslinked areas of the photoresist. The patterned photoresist is subsequently etched using a high density, low pressure, anisotropic O.sub.2 plasma alone to produce residue-free images with vertical wall profiles in the photoresist. This method is particularly advantageous with RFI reactive ion etch systems.
摘要:
An improved fin device used as the body of a field effect transistor (“FET”) and an improved process of making the fin device. The fin device allows for the fabrication of very small dimensioned metal-oxide semiconductor (“MOS”) FETs in the size range of micrometers to nanometers, while avoiding the typical short channel effects often associated with MOSFETs of these dimensions. Accordingly, higher density MOSFETs may be fabricated such that more devices may be placed on a single semiconductor wafer. The process of making the fin device results in an improved fully planarized device.
摘要:
An improved fin device used as the body of a field effect transistor (“FET”) and an improved process of making the fin device. The fin device allows for the fabrication of very small dimensioned metal-oxide semiconductor (“MOS”) FETs in the size range of micrometers to nanometers, while avoiding the typical short channel effects often associated with MOSFETs of these dimensions. Accordingly, higher density MOSFETs may be fabricated such that more devices may be placed on a single semiconductor wafer. The process of making the fin device results in an improved fully planarized device.