Abstract:
A sealed speaker system includes an enclosure and a transducer diaphragm mounted within the enclosure, where an increase in air pressure within the enclosure results in an outward movement of the diaphragm toward an exterior of the enclosure, and a decrease in air pressure within the enclosure results in an inward movement of the diaphragm toward an interior of the enclosure. A pressure vent is provided in the enclosure and allows a gradual transfer of air between the enclosure interior and the enclosure exterior to substantially maintain a pressure equilibrium between the enclosure interior and the enclosure exterior.
Abstract:
A loudspeaker includes a motor assembly having a back plate and a pole piece centrally disposed with respect to the back plate. The pole piece has a first end and a second end, where the pole piece has a center vent allowing bi-directional air flow in and out of the motor assembly. The motor assembly further includes a top plate concentrically disposed with respect to the pole piece, and a magnet disposed between the back plate and the top plate, wherein a magnetic air gap is defined between the pole piece and the top plate. The loudspeaker further includes a voice coil disposed in the air gap. The pole piece includes at least one NACA duct formed therein, the at least one NACA duct having an inlet located at an internal surface of the pole piece in fluid communication with the center vent and an outlet located at an exterior surface of the pole piece in fluid communication with the magnetic air gap in order to extract air flow from the center vent and redirect the air flow toward the voice coil.
Abstract:
A loudspeaker system is provided including an enclosure and a transducer mounted within the enclosure. A port is provided in the enclosure, the port having an inlet located at an external surface of the enclosure and an outlet located in an interior of the enclosure which allow bi-directional air flow in and out of the enclosure. At least one duct is provided in the port to extract air flow from the port and redirect the air flow within the enclosure. In one embodiment, the at least one duct may comprise a NACA duct.
Abstract:
A loudspeaker transducer includes a voice coil former and a trough member attached to the voice coil former, where the trough member includes a flexible adhesive material therein. A cone is received within the trough member and secured therein by the flexible adhesive material to provide a flexible coupling between the voice coil former and the cone. In other embodiments, the cone may be received by a flexible insert member or secured between flexible disks to provide a flexible coupling of the cone and voice coil former.
Abstract:
A loudspeaker includes a motor assembly having a back plate and a pole piece centrally disposed with respect to the back plate. The pole piece has a first end and a second end, where the pole piece has a center vent allowing bi-directional air flow in and out of the motor assembly. The motor assembly further includes a top plate concentrically disposed with respect to the pole piece, and a magnet disposed between the back plate and the top plate, wherein a magnetic air gap is defined between the pole piece and the top plate. The loudspeaker further includes a voice coil disposed in the air gap. The pole piece includes at least one NACA duct formed therein, the at least one NACA duct having an inlet located at an internal surface of the pole piece in fluid communication with the center vent and an outlet located at an exterior surface of the pole piece in fluid communication with the magnetic air gap in order to extract air flow from the center vent and redirect the air flow toward the voice coil.
Abstract:
A sealed speaker system includes an enclosure and a transducer diaphragm mounted within the enclosure, where an increase in air pressure within the enclosure results in an outward movement of the diaphragm toward an exterior of the enclosure, and a decrease in air pressure within the enclosure results in an inward movement of the diaphragm toward an interior of the enclosure. A pressure vent is provided in the enclosure and allows a gradual transfer of air between the enclosure interior and the enclosure exterior to substantially maintain a pressure equilibrium between the enclosure interior and the enclosure exterior.
Abstract:
An acoustic system that includes an acoustic assembly and a sound system. The acoustic assembly at least includes a tube removably attached to a compression driver. Additionally, the acoustic assembly includes either a waveguide or a deflector. Either the waveguide or the deflector is also removably attached to the tube. The sound system communicates with the acoustic assembly and includes a filter. The filter includes a filter length that is based on an impulse response of the acoustic assembly. As part of the communication, the sound system sends an audio signal, which has been filtered by the filter, to the acoustic assembly. In response to the audio signal, the compression driver generates a sound wave that travels through the acoustic assembly. While traveling, the acoustic assembly transitions the sound wave from generally traveling in a first direction to a second direction.
Abstract:
A sealed speaker system includes an enclosure and a transducer diaphragm mounted within the enclosure, where an increase in air pressure within the enclosure results in an outward movement of the diaphragm toward an exterior of the enclosure, and a decrease in air pressure within the enclosure results in an inward movement of the diaphragm toward an interior of the enclosure. A pressure vent is provided in the enclosure and allows a gradual transfer of air between the enclosure interior and the enclosure exterior to substantially maintain a pressure equilibrium between the enclosure interior and the enclosure exterior.
Abstract:
A sealed speaker system includes an enclosure and a transducer diaphragm mounted within the enclosure, where an increase in air pressure within the enclosure results in an outward movement of the diaphragm toward an exterior of the enclosure, and a decrease in air pressure within the enclosure results in an inward movement of the diaphragm toward an interior of the enclosure. A pressure vent is provided in the enclosure and allows a gradual transfer of air between the enclosure interior and the enclosure exterior to substantially maintain a pressure equilibrium between the enclosure interior and the enclosure exterior.