-
公开(公告)号:US20120290580A1
公开(公告)日:2012-11-15
申请号:US13561468
申请日:2012-07-30
申请人: Heng Cao , Jin Dong , Jacqueline Giang Huong Morris , Ming Xie , Wen Jun Yin , Bin Zhang
发明人: Heng Cao , Jin Dong , Jacqueline Giang Huong Morris , Ming Xie , Wen Jun Yin , Bin Zhang
IPC分类号: G06F17/30
CPC分类号: G06Q30/02
摘要: A computer implemented method for clustering customers includes receiving a source set of customer records, wherein each customer record represents one customer, and each customer record includes at least one data attribute, and each data attribute has an attribute value; pre-processing the source set of customer records to generate a pre-processed set of customer records; executing a clustering algorithm on the pre-processed set of customer records to group the pre-processed set of customer records into clusters of a pre-defined number. The pre-processing comprises: determining the type of a customer in the source set of customer records; using a type attribute value to indicate the type of the customer in its customer record; normalizing data attribute values and type attribute values; weighting to the data attribute values and the type attribute values respectively to obtain weighted attribute values of the data attribute and weighted attribute values of the type attribute.
摘要翻译: 用于聚类客户的计算机实现方法包括接收客户记录的源集合,其中每个客户记录表示一个客户,并且每个客户记录包括至少一个数据属性,并且每个数据属性具有属性值; 预处理客户记录的源集合以生成预处理的一组客户记录; 在预处理的客户记录集上执行聚类算法,以将预处理的客户记录集合分组成预定义数量的集群。 预处理包括:确定客户记录源组中客户的类型; 使用类型属性值来指示客户记录中客户的类型; 归一化数据属性值和类型属性值; 分别对数据属性值和类型属性值进行加权,以获得类型属性的数据属性和加权属性值的加权属性值。
-
公开(公告)号:US08918397B2
公开(公告)日:2014-12-23
申请号:US13561468
申请日:2012-07-30
申请人: Heng Cao , Jin Dong , Jacqueline Giang Huong Morris , Ming Xie , Wen Jun Yin , Bin Zhang
发明人: Heng Cao , Jin Dong , Jacqueline Giang Huong Morris , Ming Xie , Wen Jun Yin , Bin Zhang
CPC分类号: G06Q30/02
摘要: A computer implemented method for clustering customers includes receiving a source set of customer records, wherein each customer record represents one customer, and each customer record includes at least one data attribute, and each data attribute has an attribute value; pre-processing the source set of customer records to generate a pre-processed set of customer records; executing a clustering algorithm on the pre-processed set of customer records to group the pre-processed set of customer records into clusters of a pre-defined number. The pre-processing comprises: determining the type of a customer in the source set of customer records; using a type attribute value to indicate the type of the customer in its customer record; normalizing data attribute values and type attribute values; weighting to the data attribute values and the type attribute values respectively to obtain weighted attribute values of the data attribute and weighted attribute values of the type attribute.
摘要翻译: 用于聚类客户的计算机实现方法包括接收客户记录的源集合,其中每个客户记录表示一个客户,并且每个客户记录包括至少一个数据属性,并且每个数据属性具有属性值; 预处理客户记录的源集合以生成预处理的一组客户记录; 在预处理的客户记录集上执行聚类算法,以将预处理的客户记录集合分组成预定义数量的集群。 预处理包括:确定客户记录源组中客户的类型; 使用类型属性值来指示客户记录中客户的类型; 归一化数据属性值和类型属性值; 分别对数据属性值和类型属性值进行加权,以获得类型属性的数据属性和加权属性值的加权属性值。
-
公开(公告)号:US08914372B2
公开(公告)日:2014-12-16
申请号:US13432361
申请日:2012-03-28
申请人: Heng Cao , Jin Dong , Jacqueline Giang Huong Morris , Ming Xie , Wen Jun Yin , Bin Zhang
发明人: Heng Cao , Jin Dong , Jacqueline Giang Huong Morris , Ming Xie , Wen Jun Yin , Bin Zhang
CPC分类号: G06Q30/02
摘要: A computer implemented method for clustering customers includes receiving a source set of customer records, wherein each customer record represents one customer, and each customer record includes at least one data attribute, and each data attribute has an attribute value; pre-processing the source set of customer records to generate a pre-processed set of customer records; executing a clustering algorithm on the pre-processed set of customer records to group the pre-processed set of customer records into clusters of a pre-defined number. The pre-processing comprises: determining the type of a customer in the source set of customer records; using a type attribute value to indicate the type of the customer in its customer record; normalizing data attribute values and type attribute values; weighting to the data attribute values and the type attribute values respectively to obtain weighted attribute values of the data attribute and weighted attribute values of the tune attribute.
摘要翻译: 用于聚类客户的计算机实现方法包括接收客户记录的源集合,其中每个客户记录表示一个客户,并且每个客户记录包括至少一个数据属性,并且每个数据属性具有属性值; 预处理客户记录的源集合以生成预处理的一组客户记录; 在预处理的客户记录集上执行聚类算法,以将预处理的客户记录集合分组成预定义数量的集群。 预处理包括:确定客户记录源组中客户的类型; 使用类型属性值来指示客户记录中客户的类型; 归一化数据属性值和类型属性值; 分别对数据属性值和类型属性值进行加权,以获得数据属性的加权属性值和调整属性的加权属性值。
-
公开(公告)号:US20120254179A1
公开(公告)日:2012-10-04
申请号:US13432361
申请日:2012-03-28
申请人: Heng Cao , Jin Dong , Jacqueline Giang Huong Morris , Ming Xie , Wen Jun Yin , Bin Zhang
发明人: Heng Cao , Jin Dong , Jacqueline Giang Huong Morris , Ming Xie , Wen Jun Yin , Bin Zhang
IPC分类号: G06F17/30
CPC分类号: G06Q30/02
摘要: A computer implemented method for clustering customers includes receiving a source set of customer records, wherein each customer record represents one customer, and each customer record includes at least one data attribute, and each data attribute has an attribute value; pre-processing the source set of customer records to generate a pre-processed set of customer records; executing a clustering algorithm on the pre-processed set of customer records to group the pre-processed set of customer records into clusters of a pre-defined number. The pre-processing comprises: determining the type of a customer in the source set of customer records; using a type attribute value to indicate the type of the customer in its customer record; normalizing data attribute values and type attribute values; weighting to the data attribute values and the type attribute values respectively to obtain weighted attribute values of the data attribute and weighted attribute values of the tune attribute.
摘要翻译: 用于聚类客户的计算机实现方法包括接收客户记录的源集合,其中每个客户记录表示一个客户,并且每个客户记录包括至少一个数据属性,并且每个数据属性具有属性值; 预处理客户记录的源集合以生成预处理的一组客户记录; 在预处理的客户记录集上执行聚类算法,以将预处理的客户记录集合分组成预定义数量的集群。 预处理包括:确定客户记录源组中客户的类型; 使用类型属性值来指示客户记录中客户的类型; 归一化数据属性值和类型属性值; 分别对数据属性值和类型属性值进行加权,以获得数据属性的加权属性值和调整属性的加权属性值。
-
-
-