Abstract:
There are described methods and systems for deploying optical fiber within a conduit. In one aspect, an optical fiber injector comprising a pressure vessel having a fluid inlet and a fluid outlet. The fluid outlet is engaged with an open end of the conduit. A length of optical fiber is provided within the pressure vessel. The optical fiber is then jetted into the conduit by injecting a fluid into the pressure vessel via the fluid inlet. The optical fiber injector is configured such that the fluid is directed from the fluid inlet to the fluid outlet, and urges the optical fiber to move through the conduit, thereby deploying the optical fiber within the conduit. In a further aspect, there is provided a modular assembly comprising a pipeline and a line of two or more conduits arranged end-to-end. Each pair of opposing ends of adjacent conduits is connected together by a separate splice box. The line is positioned along and adjacent to a length of the pipeline.
Abstract:
A sound baffle device for use with an acoustic sensor deployed in a housing by a deployment line is disclosed. The sound baffle device comprises a radially extending baffle plate and an affixing mechanism for affixing the baffle plate to the deployment line. The baffle plate is configured to reduce acoustic transmission between a first zone of the housing on one side of the baffle plate and a second zone of the housing on an opposite side of the baffle plate. A system for detecting acoustic signals in a zone of interest in a housing is also disclosed. The system comprises an acoustic sensor positioned in the zone of interest and one or more than one sound baffle positioned between the zone of interest and a first zone of the housing. The sound baffle is configured to reduce acoustic transmission from the first zone to the zone of interest. The sound baffle provides some level of acoustic isolation between two zones on either side of the baffle plate thereby aiding detection and identification of acoustic signals in the zone of interest by reducing transmission of acoustic signals from the first zone to the zone of interest.
Abstract:
There are described methods and systems for deploying optical fiber within a conduit. In one aspect, an optical fiber injector comprising a pressure vessel having a fluid inlet and a fluid outlet. The fluid outlet is engaged with an open end of the conduit. A length of optical fiber is provided within the pressure vessel. The optical fiber is then jetted into the conduit by injecting a fluid into the pressure vessel via the fluid inlet. The optical fiber injector is configured such that the fluid is directed from the fluid inlet to the fluid outlet, and urges the optical fiber to move through the conduit, thereby deploying the optical fiber within the conduit. In a further aspect, there is provided a modular assembly comprising a pipeline and a line of two or more conduits arranged end-to-end. Each pair of opposing ends of adjacent conduits is connected together by a separate splice box. The line is positioned along and adjacent to a length of the pipeline.
Abstract:
There are described methods and systems for deploying optical fiber within a conduit. In one aspect, an optical fiber injector comprising a pressure vessel having a fluid inlet and a fluid outlet. The fluid outlet is engaged with an open end of the conduit. A length of optical fiber is provided within the pressure vessel. The optical fiber is then jetted into the conduit by injecting a fluid into the pressure vessel via the fluid inlet. The optical fiber injector is configured such that the fluid is directed from the fluid inlet to the fluid outlet, and urges the optical fiber to move through the conduit, thereby deploying the optical fiber within the conduit. In a further aspect, there is provided a modular assembly comprising a pipeline and a line of two or more conduits arranged end-to-end. Each pair of opposing ends of adjacent conduits is connected together by a separate splice box. The line is positioned along and adjacent to a length of the pipeline.
Abstract:
A sound baffle device for use with an acoustic sensor deployed in a housing by a deployment line comprises a radially extending baffle plate and an affixing mechanism for affixing the baffle plate to the deployment line. The baffle plate is configured to reduce acoustic transmission between a first zone of the housing on one side of the baffle plate and a second zone of the housing on an opposite side of the baffle plate.