摘要:
In a high print resolution, high image quality mode and a low print resolution, high speed mode, image processes are made in common between them to the extent possible, and the same gradation characteristics and image densities can be obtained between them. For this purpose, for the high image quality mode, a dot arrangement pattern is prepared for a pixel region having gradation data of K levels, which determines the presence or absence of print dots at K-1 areas, and in which the printing of 1 dot is permitted at all of the K-l areas. On the other hand, for the high speed mode, a dot arrangement pattern which determines the presence or absence of print dots at a number of areas less than K-1 is prepared, and in which the sum of the number of dots permitted to be printed at the pixel region is K-1.
摘要:
While high print resolution, high image quality mode and a low print resolution, high speed mode are provided, image processes are made in common between them to the extent possible, and the same gradation characteristics and image densities can be obtained between them. For this purpose, for the high image quality mode, a dot arrangement pattern is prepared for a pixel region having gradation data of K levels, which determines the presence or absence of print dots at K-1 areas, and in which the printing of 1 dot is permitted at all of the K-1 areas. On the other hand, for the high speed mode, a dot arrangement pattern which determines the presence or absence of print dots at a number of areas less than K-1 is prepared, and in which the sum of the number of dots permitted to be printed at the pixel region is K-1.
摘要:
Graininess is suppressed while at the same time minimizing grayscale variations caused by inter-plane deviations. For this purpose, when a pixel is printed by M relative scans of a print head over a print medium or by a relative scans of M print heads over the print medium, M pieces of multivalued image data is created according to a division number or distribution ratio determined by a grayscale value of that pixel. The M pieces of multivalued image data are individually quantized and then the printing is performed according to the quantized pixel data. This process prevents dot generation delays and graininess from deteriorating in highlighted areas, thus realizing printed images highly robust against density variations.
摘要:
An ink jet recording apparatus for effecting recording using a recording head for ejecting ink, the ink jet recording apparatus including a heating section for heating the recording head, a detecting unit for detecting a temperature of the recording head, a setting unit for setting a target temperature of the recording head, and a controller for controlling the target temperature of the recording head at or above the target temperature. The controller controls the temperature by heating control for heating the recording head and by diffusing control for diffusing the heat supplied by the heating control.
摘要:
When executing the gradation lowering processing to a data area in the lower side in multi-valued print data 403, an error generated by executing the gradation lowering processing to the data area in the lower side is stored in an information storage area 901B. On the other hand, the error thus distributed and stored is used for executing the gradation lowering processing to the data area “J” (Jth line) in multi-valued print data 404 relating to the next scan. In this way the error generated when executing the gradation lowering processing to the multi-valued print data is stored, which is used at the time of executing the gradation lowering processing to the multi-valued print data relating to the next scan. Therefore, the density is stored by receiving and delivering the error between the multi-valued print data in a scan unit.
摘要:
Multi-valued image data stored in an input image buffer are read out for each time of scans, and the color space conversion and image distribution are performed to read multi-valued image data. The binarized result is sent to the print buffer and at the same time, is accumulated as the print information to execute processing of reflecting it to the image distribution processing of the next pass. It is possible to appropriately restrict the density fluctuation due to the print position shift between planes without providing pixels where dots are overlapped and printed more than necessary. With this, by accumulating the multi-valued image data at the stage of RGB in the input image buffer to read out data stored in input image buffer for executing processing, a capacity required for input image buffer does not change even if the number of the ink colors provided on the printing apparatus increases.
摘要:
The quantity processing is executed to data distributed for each color. Binary data obtained by this quantization processing are selected only in regard to a color generating print quantity information. Filtering processing is executed to the binary data of the selected color to generate the print quantity information. In the quantization processing for a second plane, data found by converting the print quantity information generated in the first plane processing into a minus value are added to the multi-valued data. In the quantization processing in the second plane added, the value of the multi-valued data is made small and in the quantity, probability that the multi-valued data become binary data printing the dots is made small. That is, a ratio where dots in the first plane and dots in the second plane overlap and are formed can be made small.
摘要:
Graininess is suppressed while at the same time minimizing grayscale variations caused by inter-plane deviations. For this purpose, when a pixel is printed by M relative scans of a print head over a print medium or by a relative scans of M print heads over the print medium, M pieces of multivalued image data is created according to a division number or distribution ratio determined by a grayscale value of that pixel. The M pieces of multivalued image data are individually quantized and then the printing is performed according to the quantized pixel data. This process prevents dot generation delays and graininess from deteriorating in highlighted areas, thus realizing printed images highly robust against density variations.
摘要:
A spliced ink-jet head including head chips, each of which is capable of discharging inks of two or more colors, and which are spliced in a staggered manner which restrains the occurrence of splice streaks, white streaks caused by deflection at ends or uneven colors attributable to different landing orders of ink droplets in spliced portions of different colors when one-pass recording is carried out. The head chips is arranged such that, in a relationship between two adjoining head chips, at least one discharge port of one head chip and one discharge port of the other head chip for the same color tone ink in end portions overlap on a line in a recording material feeding direction, while discharge ports for different color tone inks do not overlap.
摘要:
A printing apparatus executes printing by arranging plural printheads, each including a plurality of print elements in a direction of a print width so as to obtain the print width corresponding to a width of a printing medium and conveying the printing medium in a direction perpendicular to the direction of the print width. The printing positions of part of the print elements of a first printhead in the direction of the print width overlap with part of the print elements of a second printhead in the direction of the print width. The apparatus includes a conveyor for conveying the printing medium, a mutual complementary printer performing mutual complementary printing in the overlap portion by the overlapped print elements, and a time divisional driving controller for dividing the plurality of print elements of each of the plural printheads into a plurality of blocks, with each block composed of a predetermined number of print elements, and for time-divisionally driving the predetermined number of print elements included in each block. The predetermined number differs from a number of print elements included in the overlap portion, and the time divisional driving controller controls the driving sequences of the overlapped print elements of the plural printheads to coincide with each other.