Abstract:
In a safety system for an elevator, a safety gear is mounted to a car, the safety gear being electrically operated by an actuator to cause the car to make an emergency stop regardless of whether a running direction of the car is upward or downward. A safety gear controller cuts power supply to a hoisting machine motor and causes the safety gear to make a braking operation upon detection of the slip between the drive sheave and the main rope based on a drive sheave acceleration exceeding a predetermined value.
Abstract:
In a safety system for an elevator, slip detection means detects a slip between a drive sheave and a main rope. A safety gear is mounted to a car, the safety gear being electrically operated by an actuator to cause the car to make an emergency stop regardless of whether a running direction of the car is upward or downward. A safety gear controller cuts power supply to a hoisting machine motor and causes the safety gear to make a braking operation upon detection of the slip between the drive sheave and the main rope by the slip detection means.
Abstract:
In a safety system for an elevator, slip detection means detects a slip between a drive sheave and a main rope. A safety gear is mounted to a car, the safety gear being electrically operated by an actuator to cause the car to make an emergency stop regardless of whether a running direction of the car is upward or downward. A safety gear controller cuts power supply to a hoisting machine motor and causes the safety gear to make a braking operation upon detection of the slip between the drive sheave and the main rope by the slip detection means.
Abstract:
In a safety system for an elevator, slip detection means detects a slip between a drive sheave and a main rope. A safety gear is mounted to a car, the safety gear being electrically operated by an actuator to cause the car to make an emergency stop regardless of whether a running direction of the car is upward or downward. A safety gear controller cuts power supply to a hoisting machine motor and causes the safety gear to make a braking operation upon detection of the slip between the drive sheave and the main rope by the slip detection means.
Abstract:
In a safety system for an elevator, slip detection means detects a slip between a drive sheave and a main rope. A safety gear is mounted to a car, the safety gear being electrically operated by an actuator to cause the car to make an emergency stop regardless of whether a running direction of the car is upward or downward. A safety gear controller cuts power supply to a hoisting machine motor and causes the safety gear to make a braking operation upon detection of the slip between the drive sheave and the main rope by the slip detection means.
Abstract:
In a safety system for an elevator, slip detection means detects a slip between a drive sheave and a main rope. A safety gear is mounted to a car, the safety gear being electrically operated by an actuator to cause the car to make an emergency stop regardless of whether a running direction of the car is upward or downward. A safety gear controller cuts power supply to a hoisting machine motor and causes the safety gear to make a braking operation upon detection of the slip between the drive sheave and the main rope by the slip detection means.
Abstract:
A door engagement device for an elevator according to the present invention is configured in such a manner that biasing-force applying/changing means applies a turning preventing force for preventing turning of a lever main body and changes a direction of a biasing force to a direction of an anti-turning preventing force to the lever main body by action of turning guiding means with movement of a car door. Accordingly, an engagement-mechanism driving device can be driven with a reduced space at low cost.
Abstract:
An elevator rope including a rope main body; and a covering resin layer that covers the periphery of the rope main body and comprises a molded product of a composition which composition is produced by mixing a thermoplastic polyurethane elastomer, a thermoplastic resin other than the thermoplastic polyurethane elastomer and an isocyanate compound having two or more isocyanate groups per molecule; a rope main body impregnated with an impregnating solution comprising a hydroxy compound having two or more hydroxy groups per molecule and an isocyanate compound having two or more isocyanate groups per molecule and having a lower viscosity than a melt viscosity of the composition for forming the covering resin layer is used as the rope main body; the elevator rope has a stable friction coefficient that does not depend on temperature or sliding velocity.
Abstract:
In an elevator apparatus, an operation control section controls an operation of a car. Further, a safety monitoring section detects an abnormal state of targets to be monitored during running of the car to stop the running of the car. A safety-monitoring-function inspection section inspects a function of the safety monitoring section. The safety-monitoring-function inspection section causes the safety monitoring section to detect a transition of a state of the targets to be monitored to the abnormal state regardless of an actual state of the targets to be monitored while the car is running under control of the operation control section.
Abstract:
An emergency stop system for an elevator includes a state sensor for detecting an operation of a car, a brake device for braking the car, a brake controller for outputting a signal for operating the brake device based on a signal detected by the state sensor, and an uninterruptible power supply device for supplying electric power to the sensor, the brake device, and the controller. The controller has a signal processing/calculating unit for calculating the deceleration of the car based on the signal detected by the sensor, a command value calculating unit for calculating a command value for operating the brake device based on the deceleration of the car calculated by the processing/calculating unit, and a power monitoring device for monitoring state of the uninterruptible power supply device. At least one of the sensor, the processing/calculating unit, and the calculating unit includes independent systems.