摘要:
Disclosed is a method for producing a primary amine compound represented by the formula (2) below, which is characterized in that a halogen compound represented by the formula (1) below, ammonia and formaldehyde are reacted with each other, and then the thus-obtained reaction product is [1] brought into contact with an aqueous solution of an acid or [2] reacted with a hydroxylamine under acidic conditions. By this method, a primary amine compound can be commercially advantageously produced by using a low-cost ammonia while suppressing production of a secondary amine as a by-product. (1) (In the formula, R1 and R2 independently represent a hydrogen atom, a C1-C5 alkyl group which may be substituted by a halogen atom or the like, a C1-C5 alkoxy group which may be substituted by a halogen atom, a cyano group, a C2-C11 alkenyl group or a phenyl group or the like; R3 represents a hydrogen atom, a linear or branched C1-C5 alkyl group or a cyano group; and X represents a halogen atom.) (2) (In the formula, R1, R2 and R3 are as defined above.)
摘要:
Disclosed is a method for producing a primary amine compound represented by the formula (2) below, which is characterized in that a halogen compound represented by the formula (1) below, ammonia and formaldehyde are reacted with each other, and then the thus-obtained reaction product is [1] brought into contact with an aqueous solution of an acid or [2] reacted with a hydroxylamine under acidic conditions. By this method, a primary amine compound can be commercially advantageously produced by using a low-cost ammonia while suppressing production of a secondary amine as a by-product. (1) (In the formula, R1 and R2 independently represent a hydrogen atom, a C1-C5 alkyl group which may be substituted by a halogen atom or the like, a C1-C5 alkoxy group which may be substituted by a halogen atom, a cyano group, a C2-C11 alkenyl group or a phenyl group or the like; R3 represents a hydrogen atom, a linear or branched C1-C5 alkyl group or a cyano group; and X represents a halogen atom.) (2) (In the formula, R1, R2 and R3 are as defined above.)
摘要:
There is provided a process for preparing a carboxylic acid ester of formula (3): R2COOR1 (3) wherein R1 is an alkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, an aralkyl group which may be substituted, or a heteroarylalkyl group which may be substituted, and R2 is an alkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, an aryl group which may be substituted, a heteroaryl which may be substituted, an aralkyl group which may be substituted, or a heteroarylalkyl group which may be substituted, which process is characterized by the steps of reacting a monohydroxy compound of formula (1): R1OH (1) wherein R1 is as defined above, with a zirconium compound of formula (6): Zr(OR8)4 (6) wherein R8 is an alkyl group or an aryl group which may be substituted and is not the same as R1, to prepare a zirconium catalyst, and reacting a carboxylic acid of formula (2): R2COOH (2) wherein R2 is as defined above, with the monohydroxy compound of formula (1) in the presence of the zirconium catalyst.
摘要:
A method for purifying an α-unsaturated amine compound represented by Formula (1), the method comprising a step of extracting with water the compound of Formula (1) from a crude product of the α-unsaturated amine compound represented by Formula (1), and a step of extracting with a pyridine solvent the α-unsaturated amine compound of Formula (1) from the aqueous solution containing the compound of Formula (1) obtained in the previous step to obtain a pyridine solvent solution of the compound of Formula (1): wherein R1 represents a hydrogen atom, a C1-4 alkyl group, a halo C1-4 alkyl group, a C1-4 alkoxy-C1-4 alkyl group, a C7-9 aralkyl group, or an optionally substituted phenyl group, R2 represents a hydrogen atom, a C1-4 alkyl group, or a C7-9 aralkyl group, and R3 represents a hydrogen atom, a C1-5 alkyl group, a halo C1-4 alkyl group, a hydroxy C1-4 alkyl group, a C1-4 alkoxy-C1-4 alkyl group, C2-4 alkenyl group, or a C7-9 aralkyl group.
摘要:
There is provided a process for preparing a carboxylic acid ester of formula (3): R2COOR1 (3) wherein R1 is an alkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, an aralkyl group which may be substituted, or a heteroarylalkyl group which may be substituted, and R2 is an alkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, an aryl group which may be substituted, a heteroaryl which may be substituted, an aralkyl group which may be substituted, or a heteroarylalkyl group which may be substituted, which process is characterized by the steps of reacting a monohydroxy compound of formula (1): R1OH (1) wherein R1 is as defined above, with a zirconium compound of formula (6): Zr(OR8)4 (6) wherein R8 is an alkyl group or an aryl group which may be substituted and is not the same as R1, to prepare a zirconium catalyst, and reacting a carboxylic acid of formula (2): R2COOH (2) wherein R2 is as defined above, with the monohydroxy compound of formula (1) in the presence of the zirconium catalyst.
摘要:
There is disclosed a process for producing an optically active hemiester of formula (1): wherein R1, R2 and R5 represent the same meanings as described below, which comprises reacting a cyclic acid anhydride of formula (2): wherein R1 and R2 are different and independently represent a hydrogen atom, a halogen atom, an alkyl group optionally substituted with an alkoxy group or a halogen atom, and the like, with a hydroxy compound of formula (3): R3OH (3) wherein R3 represents an alkyl group optionally substituted with an alkoxy group, a phenoxy group, a dialkylamino group or a halogen atom and the like, in the presence of an asymmetric catalyst.
摘要:
A production method of 1,1,3-trichloro-1-propene comprising the following steps A and B; Step A: 1,1,1,3-tetrachloropropane is dehydrochlorinated at a temperature between 30° C. and 50° C. in the presence of at least one base selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides, and a phase transfer catalyst, Step B: 3,3,3-trichloro-1-propene obtained in the step A is isomerized into 1,1,3-trichloro-1-propene in the presence of a metal catalyst.
摘要:
A production method of 1,1,3-trichloro-1-propene comprising the following steps A and B;Step A: 1,1,1,3-tetrachloropropane is dehydrochlorinated at a temperature between 30° C. and 50° C. in the presence of at least one base selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides, and a phase transfer catalyst,Step B: 3,3,3-trichloro-1-propene obtained in the step A is isomerized into 1,1,3-trichloro-1-propene in the presence of a metal catalyst.
摘要:
There is disclosed a process for the racemization of a vinyl-substituted cyclopropanecarboxylic acid or a derivative thereof, which is characterized by reacting an optically active vinyl-substituted cyclopropanecarboxylic acid compound of formula (1): wherein R1, R2, R3 and R4 each independently represent a hydrogen atom, a halogen atom, alkyl which may be substituted having 1-4 carbon atoms, aryl which may be substituted, or alkoxycarbonyl which may be substituted, or R1 and R2 are bonded to form an alkylene group, which may be substituted; and wherein X represents hydroxyl, a halogen atom, alkoxy which may be substituted having 1-20 carbon atoms, or aryloxy which may be substituted, with a nitric compound or a nitrogen oxide.
摘要翻译:公开了乙烯基取代的环丙烷羧酸或其衍生物外消旋化的方法,其特征在于使式(1)的光学活性乙烯基取代的环丙烷羧酸化合物:其中R 1,R 2, R 3和R 4各自独立地表示氢原子,卤素原子,可被取代有1-4个碳原子的烷基,可被取代的芳基,或可被取代的烷氧基羰基,或R 1和R 2 <2>键合以形成可以被取代的亚烷基; 并且其中X表示羟基,卤素原子,可被取代有1-20个碳原子的烷氧基,或可被取代的芳氧基,与硝酸化合物或氮氧化物反应。
摘要:
Disclosed are: a casting aluminum alloy that is excellent in elongation as alternative properties of a high cycle fatigue strength and a thermal fatigue strength and is suitably usable for a casting for which both of the excellent high cycle fatigue strength and the excellent thermal fatigue strength are required, for example, an internal combustion engine cylinder head; a casting made of the aluminum alloy; a manufacturing method of the casting; and further, an internal combustion engine cylinder head composed of the aluminum alloy casting and manufactured by the manufacturing method of the casting. The casting aluminum alloy contains, in terms of mass ratios, 4.0 to 7.0% of Si, 0.5 to 2.0% of Cu, 0.25 to 0.5% of Mg, no more than 0.5% of Fe, no more than 0.5% of Mn, and at least one component selected from the group consisting of Na, Ca and Sr, each mass ratio of which is 0.002 to 0.02%.