摘要:
An object detection apparatus and method capable of detecting objects based on visual images captured by a self-moving unit. A sequential images output section makes a train of a first input image and a second input image sequential to the first input image and outputs said train. A local area image processor calculates local flows based on said first input image and said second input image. An inertia information acquiring section measures self-motion of the unit to calculate inertia information thereof. A global area image processor uses said inertia information to estimate global flow, which is a motion field of the entire view associated to the self-motion, using said global flow and said first input image and creates a predictive image of said second input image. The global area image processor then calculates differential image data, which is a difference between said predictive image and said second input image. A figure-ground segregation section uses said differential image data to refine said local flows and compares the refined local flows with a predetermined threshold value to extract a figure candidate area, which is the area having a high probability of an object existing in the input image. An object presence/absence determination section determines presence/absence of objects in said figure candidate area.
摘要:
An object detection apparatus is provided for detecting both stationary objects and moving objects accurately from an image captured from a moving mobile unit.The object detection apparatus of the present invention applies Gabor filter to two or more input images captured by an imaging device such as CCD camera mounted on a mobile unit, and calculates optical flow of local areas in the input images. Then the object detection apparatus closely removes optical flow produced by motion of the mobile unit by estimating optical flow produced from background of the input images. In other words, the object detection apparatus clarifies the area where object is not present (“ground”) in the input images. By removing such “ground” part, the area where objects seems to be present (“feature”) is extracted from the input images. Finally, the object detection apparatus determines whether objects are present or not using flow information of the extracted “feature” part.
摘要:
An object detection apparatus and method capable of detecting objects based on visual images captured by a self-moving unit. A sequential images output section makes a train of a first input image and a second input image sequential to the first input image and outputs said train. A local area image processor calculates local flows based on said first input image and said second input image. An inertia information acquiring section measures self-motion of the unit to calculate inertia information thereof. A global area image processor uses said inertia information to estimate global flow, which is a motion field of the entire view associated to the self-motion, using said global flow and said first input image and creates a predictive image of said second input image. The global area image processor then calculates differential image data, which is a difference between said predictive image and said second input image. A figure-ground segregation section uses said differential image data to refine said local flows and compares the refined local flows with a predetermined threshold value to extract a figure candidate area, which is the area having a high probability of an object existing in the input image. An object presence/absence determination section determines presence/absence of objects in said figure candidate area.
摘要:
The object detection apparatus according to the invention detects an object based on input images that are captured sequentially in time in a moving unit. The apparatus generates an action command to be sent to the moving unit, calculates flow information for each local area in the input image, and estimates an action of the moving unit based on the flow information. The apparatus calculates a difference between the estimated action and the action command and then determines a specific local area as a figure area when such difference in association with that specific local area exhibits an error larger than a predetermined value. The apparatus determines presence/absence of an object in the figure area.
摘要:
An image recognizing apparatus and method is provided for recognizing behavior of a mobile unit accurately with an image of external environment acquired during the mobile unit is moving.Behavior command output block 12 outputs behavior commands to cause the mobile unit 32 move. Local feature extraction block 16 extracts features of local areas of the image from the image of external environment acquired on the mobile unit 32 when the behavior command is output. Global feature extraction block 18 extracts feature of global area of the image using the features of local areas. Learning block 20 calculates probability models for recognizing behavior given to the mobile unit 32 based on the feature of global area of the image. After learning is finished, behavior of the mobile unit 32 may be recognized rapidly and accurately by applying the probability models to an image of external environment acquired in mobile unit 32 afresh.
摘要:
A trajectory planning system obtains a trajectory for controlling a state of an object toward a goal state. The system includes a search tree generating section which registers a state of the object as a root of a search tree in a state space, registers a next state of the object after a lapse of a predetermined time interval obtained through dynamical relationships during the time interval as a branch of the search tree in the state space. The system further includes a known-state registration tree storing section which stores a known-state registration tree and a known-state registration tree generating section which determines a cell to which the next state belongs among a plurality of cells previously prepared by segmenting the state space, determines whether or not a state which belongs to the cell has already been registered as a branch of the known-state registration tree, discards the next state when a state which belongs to the cell has been registered, and registers the next step as a branch of the known-state registration tree when a state which belongs to the cell has not been registered. The system further includes a trajectory generating section which selects a state whose distance to the goal state is minimum among states registered as branches of the known-state registration tree and obtains a trajectory using a sequence of states in a backward direction from the state toward the root of the known-state registration tree.
摘要:
A system capable of separating sound source signals with high precision while improving a convergence rate and convergence precision. A process of updating a current separation matrix Wk to a next separation matrix Wk+1 such that a next value J(Wk+1) of a cost function is closer to a minimum value J(W0) than a current value J(Wk) is iteratively performed. An update amount ΔWk of the separation matrix is increased as the current value J(Wk) of the cost function is increased and is decreased as a current gradient ∂J(Wk)/∂W of the cost function is rapid. On the basis of input signals x from a plurality of microphones Mi and an optimal separation matrix W0, it is possible to separate sound source signals y(=W0·x) with high precision while improving a convergence rate and convergence precision.
摘要:
An automatic speech recognition system includes: a sound source localization module for localizing a sound direction of a speaker based on the acoustic signals detected by the plurality of microphones; a sound source separation module for separating a speech signal of the speaker from the acoustic signals according to the sound direction; an acoustic model memory which stores direction-dependent acoustic models that are adjusted to a plurality of directions at intervals; an acoustic model composition module which composes an acoustic model adjusted to the sound direction, which is localized by the sound source localization module, based on the direction-dependent acoustic models, the acoustic model composition module storing the acoustic model in the acoustic model memory; and a speech recognition module which recognizes the features extracted by a feature extractor as character information using the acoustic model composed by the acoustic model composition module.
摘要:
A system capable of separating sound source signals with high precision while improving a convergence rate and convergence precision. A process of updating a current separation matrix Wk to a next separation matrix Wk+1 such that a next value J(Wk+1) of a cost function is closer to a minimum value J(W0) than a current value J(Wk) is iteratively performed. An update amount ΔWk of the separation matrix is increased as the current value J(Wk) of the cost function is increased and is decreased as a current gradient ∂J(Wk)/∂W of the cost function is rapid. On the basis of input signals x from a plurality of microphones Mi and an optimal separation matrix W0, it is possible to separate sound source signals y(=W0·x) with high precision while improving a convergence rate and convergence precision.
摘要:
An ultra-directional speaker having a modulator 33 for modulating an ultrasonic carrier signal with an input electric signal from an audible sound signal source, and an emitter 44 for emitting an output of the modulator 33 is mounted in a moving object 1 having a target tracking system for sensing a target in a surrounding space in real time using the above-mentioned emitter 44. The moving object equipped with ultra-directional speaker can therefore transmit a voice only to a specific target through parametric action caused by the nonlinearity of finite amplitude of ultrasonic wave.