摘要:
Disclosed is a system and method for controlling a resonance frequency of a Film Bulk Acoustic Resonator (FBAR) device. The system includes at least one switching capacitor coupled to the FBAR device and a modulator. The at least one switching capacitor includes at least one capacitor and a switch configuration disposed in series with the FBAR device and the at least one capacitor, which is switch configuration capable of opening and closing connection of the at least one capacitor with the FBAR device. The modulator is coupled to the switch configuration, which generates a switching condition signal based on the manufacturing variation in the FBAR device and the environmental effects on the FBAR device. The switch configuration performs opening and closing of the connection of the at least one capacitor and the FBAR device based on the switching condition signal.
摘要:
Disclosed is a system and method for controlling a resonance frequency of a Film Bulk Acoustic Resonator (FBAR) device. The system includes at least one switching capacitor coupled to the FBAR device and a modulator. The at least one switching capacitor includes at least one capacitor and a switch configuration disposed in series with the FBAR device and the at least one capacitor, which is switch configuration capable of opening and closing connection of the at least one capacitor with the FBAR device. The modulator is coupled to the switch configuration, which generates a switching condition signal based on the manufacturing variation in the FBAR device and the environmental effects on the FBAR device. The switch configuration performs opening and closing of the connection of the at least one capacitor and the FBAR device based on the switching condition signal.
摘要:
A discrete time filter achieves gain by sampling a signal using capacitors arranged in a one configuration and then changing the capacitors to a series configuration to develop a filter output voltage. In at least one embodiment, a variable gain filter is achieved by varying the number of capacitors that are active in the filter.
摘要:
Briefly, in accordance with one or more embodiments, a radio device comprises an analog front end comprising a radio to transmit and/or receive radio-frequency signals, and a programmable engine coupled to the analog front end. The programmable engine is capable of being programmed to perform one or more tests on the analog front end and includes a reconfigurable data path reconfigurable by the programmable engine to perform one or more tests on the analog front end.
摘要:
Briefly, in accordance with one or more embodiments, a radio device comprises an analog front end comprising a radio to transmit and/or receive radio-frequency signals, and a programmable engine coupled to the analog front end. The programmable engine is capable of being programmed to perform one or more tests on the analog front end and includes a reconfigurable data path reconfigurable by the programmable engine to perform one or more tests on the analog front end.
摘要:
A discrete time filter achieves gain by sampling a signal using capacitors arranged in a one configuration and then changing the capacitors to a series configuration to develop a filter output voltage. In at least one embodiment, a variable gain filter is achieved by varying the number of capacitors that are active in the filter.
摘要:
This document discusses apparatus and methods for compensating non-linearity of digital-to-time converters (DTCs). In an example, a wireless device can include a digital-to-time converter (DTC) configured to receive a phase data information from a baseband processor and to provide a first modulation signal for generating a wireless signal, a detector configure to receive the first modulation signal and provide an indication of nonlinearities of the DTC, and a pre-distortion module configured to provide pre-distortion information to the DTC using the indication of nonlinearities.
摘要:
According to some embodiments, an all digital ramp generator may use a string of series connected delays or digital to time-based circuits to perform voltage ramp generation. Thus in some embodiments conventional operational amplifier circuits and relaxation oscillators may be replaced for generating triangular ramp waveforms for DC to DC or direct time-based DC to DC converters. The use of delay lines may produce sufficient resolution for many applications. Thus time domain techniques may afford a more digital approach that scales with process technology and allows high speed operation in some embodiments. A design based on use of inverters and capacitors may scale well with process technology. The decoder and drive logic may be integrated into the voltage ramp generation in some embodiments.