摘要:
A cogeneration system is provided which is capable of reliably switching a bypass damper even if a supply of electric power is shut off in an abnormal state etc. and which is unlikely to leak exhaust gas and is cost-effective even if it is increased in size. To this end, an exhaust gas path (10) for introducing exhaust gas from a gas turbine (2) into an exhaust-heat-recovery heat exchanger (8) is provided with a bypass path (11) and an inlet of the bypass path (11) is provided with a bypass damper (12) which is controlled so as to be opened and closed by an air cylinder driven by compressed air from the compressor (3).
摘要:
A rotary pump including: a casing having a circular inner circumferential surface, a rotor rotating about a center of the inner circumferential surface of the casing, a partition plate installed so as to be movable in and out of the casing so that a tip end of the partition plate comes into contact with an outer circumferential surface of the rotor, a spring which drives the partition plate so that the partition plate is in constant contact with the rotor, and an intake port and a discharge port formed in the casing so as to be positioned after and before the partition plate with respect to the direction of rotation of the rotor; and the partition plate is formed with a communicating portion that communicates between the intake port side and the discharge port side.
摘要:
A developing apparatus includes an electrostatic latent image bearer, a developing sleeve, a case, and an air filter. The case accommodates a two-component developer and the developing sleeve. The air filter is attached to the case. The air filter has a thickness of 2 to 20 mm and has a density gradient with a pressure loss of 2 to 40 Pa at a wind speed of 10 cm/s. The air filter forms an airflow sucked into the case from a gap between the developing sleeve and the case and forms an airflow discharged from the case through the air filter. The two-component developer accommodated in the case contains a magnetic particle a surface of which is coated with a resin layer. The resin layer contains at least one type of chargeable particle.
摘要:
A carrier for a developer of an electrostatic latent image, the carrier including: core particles having magnetism; and a coating layer coating a surface of each of the core particles, wherein the coating layer includes two or more kinds of inorganic particles, at least one kind of inorganic particles among the two or more kinds of inorganic particles is inorganic particles A having conductivity and a peak particle diameter of from 300 nm through 1,000 nm, and surface roughness of the carrier calculated by Formula 1 below is from 1.10 m2/g through 1.90 m2/g, C−F Formula 1 where C is a BET specific surface area (m2/g) of the carrier and F is a BET specific surface area (m2/g) of the core particles.
摘要:
Provided is an electrostatic latent image developing white toner, including: a white toner including at least a binder resin, a white pigment, and a release agent; and a magnetic carrier including at least a core material, and a coating layer coating the core material and made of a coating resin and conductive particles, wherein Ra of the magnetic carrier is in a range of from 0.50 μm to 1.00 μm, and a bulk density of the magnetic carrier is in a range of from 2.08 g/cm3 to 2.24 g/cm3.
摘要:
A carrier for developing an electrostatic latent image of the present invention includes a core material and a coating layer which coats the core material, wherein the coating layer includes a resin and fine particles, wherein the coating layer has an average layer thickness difference of 0.02 μm to 3.0 μm, and wherein the carrier for developing an electrostatic latent image has an arithmetic mean surface roughness Ra1 of 0.5 μm to 0.9 μm.
摘要:
A carrier comprising a magnetic core particle having a shape factor SF-2 of 130 to 160 and a resin layer covering a surface of the magnetic core particle. The resin layer comprises a conductive particle and a resin obtained by heating a copolymer comprising a silicon-containing A unit and another silicon-containing B unit having.
摘要:
A contact developing method including supplying a two-component developer to an electrostatic latent image on a rotating image bearing member by rotating a developing sleeve and a rotatable magnet having multiple magnetic poles provided inside the developing sleeve, to develop the electrostatic latent image into a toner image. The developing sleeve and the image bearing member rotate in the same direction while facing each other. The two-component developer comprises a non-magnetic toner and a carrier. The carrier comprises a magnetic core particle and a resin layer covering the magnetic core particle. The resin layer comprises a conductive particle and a resin. The conductive particle comprises an alumina-based material and a conductive layer covering the alumina-based material. The resin is obtained by heating a copolymer comprising a monomer A unit and a monomer B unit.
摘要:
A slave apparatus control portion refers to a priority channel table stored in a use priority channel memory at the time of establishing communications with a host apparatus. The radio channel having the highest priority is allocated as the initial channel, and a connection request signal is transmitted from a communicating portion to the host apparatus in the frequency band of the initial channel. When the initial channel interferes with the radio channels used by other slave apparatuses or the frequency bands used by PCs, the radio channel overlapping those frequency bands is avoided, and the radio channel of the frequency band that is the second highest priority is selected.
摘要:
There is provided a carrier including magnetic core particles; and a coating layer on a surface of each of the magnetic core particles, wherein the coating layer contains electroconductive particles; wherein the electroconductive particles are electroconductive particles in which white inorganic pigments are coated with phosphorus-doped tin or tungsten-doped tin; and wherein a dope ratio of phosphorus or tungsten to tin in the phosphorus-doped tin or tungsten-doped tin is 0.010 to 0.100.