摘要:
A gas turbine plant comprises an air compressor, a gas turbine combustor and a gas turbine, which are operatively connected in series. In the gas turbine plant, an air compressor shaft is accommodated in the air compressor and composed of discs piled up along an axial direction of the air compressor shaft, a gas turbine shaft is accommodated in the gas turbine and composed of discs piled up along an axial direction of the gas turbine shaft, and an intermediate shaft is interposed between the air compressor shaft and the gas turbine shaft. At least one of the discs of the air compressor shaft and the discs of the gas turbine shaft are provided with bulged portions each having approximately a hanging bell shape or trapezoidal shape.
摘要:
A steam valve in accordance with the present invention is the steam valve that houses a first valve device 21 composed of a valve seat, a valve body, a valve rod, and a driving device, and a second valve device 22 composed of the valve seat, the valve body, the valve rod, and the driving device, combined with each other in the valve casing 23, and a closing portion 41 to block a part of a main steam flow flowing from outside to inside of a strainer is formed in the strainer 27 that is housed in the valve casing 23 and that surrounds the valve body 29 of the first valve device. According to the above described configuration, the steam valve that is aimed to further decrease a pressure loss can be provided by effectively controlling the steam flow in the strainer housed in the valve casing.
摘要:
A turbine blade performs internal cooling by a cooling gas flowing through internal cooling flow passages and FCFC cooling by a cooling gas jetted out through film holes arranged on the substantially whole area of the blade surface. The film holes are arranged in rows extending in the span direction at predetermined pitches in the chord direction. The dimensions of the elements of the turbine blade are determined by a mathematical formula 5.ltoreq.L/N.multidot.D.ltoreq.50, where L is the length of any interval of the surface of the cooled turbine blade, N is the number of rows of the film holes in the interval and D is an average diameter of the film holes in the interval. With this arrangement, the maximum cooling efficiency at a small amount of cooling gas flow is attained, and both the quantity of heat per unit area of the blade surface transmitted from the main flow gas to the blade surface and the thermal stresses are reduced.
摘要:
A steam valve in accordance with the present invention is the steam valve that houses a first valve device 21 composed of a valve seat, a valve body, a valve rod, and a driving device, and a second valve device 22 composed of the valve seat, the valve body, the valve rod, and the driving device, combined with each other in the valve casing 23, and a closing portion 41 to block a part of a main steam flow flowing from outside to inside of a strainer is formed in the strainer 27 that is housed in the valve casing 23 and that surrounds the valve body 29 of the first valve device. According to the above described configuration, the steam valve that is aimed to further decrease a pressure loss can be provided by effectively controlling the steam flow in the strainer housed in the valve casing.
摘要:
A cooling flow passage assembly consisting of pressure side cooling flow passages extending in a span direction and suction side cooling flow passages extending in the span direction and serially connected to the pressure side cooling flow passages is formed in a turbine blade. A cooling medium flows through the pressure side cooling flow passages in the direction toward the tip portion and through the suction side cooling flow passages in the direction toward the root. Cooling effect is improved by a Coriolis force. The number of the suction side cooling flow passages is larger than the number of the pressure side cooling flow passages. At least one of the suction side cooling flow passages forms at least one most downstream cooling flow passage. The cooling medium flows through the most downstream cooling flow passage and is exhausted outside of the turbine blade through nozzles, whereby the flow of the cooling medium through the most downstream cooling flow passage is speeded up.
摘要:
A cooling structure of a turbine airfoil cools a turbine airfoil (10) exposed to hot gas (1), using cooling air (2) of a temperature lower than that of the hot gas. The turbine airfoil (10) includes an external surface (11), an internal surface (12) opposite to the external surface, a plurality of film-cooling holes (13) blowing the cooling air from the internal surface toward the external surface to film-cool the external surface, and a plurality of heat-transfer promoting projections (14) integrally formed with the internal surface and protruding inwardly from the internal surface. The turbine airfoil further includes a hollow cylindrical insert (20) which is positioned inside the internal surface of the turbine airfoil and to which the cooling air is supplied. The insert has a plurality of impingement holes (21) for impingement-cooling the internal surface (12).
摘要:
A combined cycle power plant comprises a gas turbine system and a steam cycle system having a steam turbine to be driven by the steam generated by the waste heat of the exhaust gas of the gas turbine system, wherein the steam from the steam cycle system flows through a gas turbine cooling system of the gas turbine to cool the gas turbine blades and other elements of the gas turbine system to be cooled and the waste heat of the gas turbine system is effectively collected. The gas turbine cooling system has two or more than two cooling ducts formed in two or more than two elements of the gas turbine system to be cooled such as the gas turbine blades and the combustor of the gas turbine system so that steam is made to flow through the cooling ducts of these two or more than two elements to be cooled to effectively and maximally exploit the cooling potential and the waste heat collecting potential of the steam and hence improve the overall thermal efficiency of the plant.
摘要:
A combined cycle power plant comprises a gas turbine system and a steam cycle system having a steam turbine to be driven by the steam generated by the waste heat of the exhaust gas of the gas turbine system, wherein the steam from the steam cycle system flows through a gas turbine cooling system of the gas turbine to cool the gas turbine blades and other elements of the gas turbine system to be cooled and the waste heat of the gas turbine system is effectively collected. The gas turbine cooling system has two or more than two coolooling ducts formed in two or more than two elements of the gas turbine system to be cooled such as the gas turbine blades and the combustor of the gas turbine system so that steam is made to flow through the cooling ducts of these two or more than two elements to be cooled to effectively and maximally exploit the cooling potential and the waste heat collecting potential of the steam and hence improve the overall thermal efficiency of the plant.
摘要:
A combined cycle power plant comprises a gas turbine system and a steam cycle system having a steam turbine to be driven by the steam generated by the waste heat of the exhaust gas of the gas turbine system, wherein the steam from the steam cycle system flows through a gas turbine cooling system of the gas turbine to cool the gas turbine blades and other elements of the gas turbine system to be cooled and the waste heat of the gas turbine system is effectively collected. The gas turbine cooling system has two or more than two cooling ducts formed in two or more than two elements of the gas turbine system to be cooled such as the gas turbine blades and the combustor of the gas turbine system so that steam is made to flow through the cooling ducts of these two or more than two elements to be cooled to effectively and maximally exploit the cooling potential and the waste heat collecting potential of the steam and hence improve the overall thermal efficiency of the plant.
摘要:
A gas turbine is equipped with a moving blade cooling apparatus arranged in association with a turbine rotor in which a plurality of discs are mounted, a plurality of moving blades are mounted each to an outer peripheral portion of each of the discs and a plurality of spacers are also disposed in spaces between the respective discs at portions corresponding to a location of stationary blades and in which the moving blades are formed each with a cooling medium flowing passage and the discs and the spacers are arranged with spaces therebetween for passing a cooling medium in a radial direction of the rotor. A closed-loop cooling unit is thus formed for supplying the cooling medium to the cooling medium flowing passage formed in the moving blade and recovering the same therefrom. A passage assembly, which is provided with a cooling medium supplying passage and a cooling medium recovering passage running in parallel with each other in an axial direction of the turbine rotor, is provided at a central axis portion of the turbine rotor, the cooling medium supplying passage of the passage assembly is formed with a cooling medium supplying port in communication with a side of a cooling medium inlet of the cooling medium flowing passage formed in the moving blade, and the cooling medium recovering passage of the passage assembly is formed with a cooling medium recovering port in communication with a cooling medium outlet of the cooling medium flowing passage in the moving blade.