摘要:
A liquid crystal display (LCD) includes a plurality of pixels, a source driver and a gate driver, each pixel comprising a transistor, a storage capacitor, a pixel electrode, a common electrode coupled to a common voltage, and liquid crystal molecules located between the pixel electrode and the common electrode, the transistor conducting a grey-scale signal generated by the gate driver to the pixel electrode based on a scan voltage generated by the gate driver, the LCD being characterized in that a substrate electrode of the transistor is coupled to a first voltage, and the storage capacitor is coupled to a substrate voltage and the transistor. The common voltage is positive proportional to the substrate voltage.
摘要:
The present invention relates to a LCOS display driving system. The driving sequential control block generates a control code representing a loading sequence of the R, G, and B data for pixels in one of scan lines. The multiplexer multiplexes the R, G, and B data from latches according the control code. The shared level shifter shifts the level of the R, G, and B data from the multiplexer. The digital analog converts converting the R, G, and B data to a corresponding analog R, G, and B data voltage. The shared unity-gain buffer stores the analog R, G, and B data voltage from the shared digital analog converter. The demultiplexer demultiplexes the analog R, G, and B data voltage according the control code.
摘要:
A method for driving a dark ring of a liquid-crystal-on-silicon (LCOS) display is provided to prevent the fringe effect (bright lines) due to the constant voltage difference between the dark ring and the adjoining pixels within the LCOS display. A dark ring is divided into a plurality of portions. The polarity of each portion is controlled in accordance with the polarity of the adjoining pixels within the LCOS display and the scan direction of gate drivers such that the polarity inversion for each portion will coincide with that for the adjoining pixels within the LCOS display so as to avoid the fringe effect (bright lines).
摘要:
A liquid crystal on silicon panel and a driving method thereof are provided. The LCOS panel and the driving method thereof of the present invention will complete driving the M×K sub-pixels after scanning I times, wherein M is the horizontal resolution and I
摘要:
A pixel circuitry of a display device and a display method thereof are provided herein. The pixel circuitry includes a scan switch, a storage element, and a sampling circuitry. The scan switch has a first terminal coupled to a data line and configured to be asserted according to a scan signal. The storage element is coupled to a second terminal of the scan switch and configured to store a pixel voltage from the data line. The sampling circuitry is configured to sample the stored pixel voltage of the storage element and to obtain a reference voltage for the display device according to the sampled signal. By sampling the stored pixel voltage of the storage element, whether the pixel voltages with different polarities are symmetry can be detected for avoiding flickers.
摘要:
The present invention relates to a LCOS display driving system. The driving sequential control block generates a control code representing a loading sequence of the R, G, and B data for pixels in one of scan lines. The multiplexer multiplexes the R, G, and B data from latches according the control code. The shared level shifter shifts the level of the R, G, and B data from the multiplexer. The digital analog converts converting the R, G, and B data to a corresponding analog R, G, and B data voltage. The shared unity-gain buffer stores the analog R, G, and B data voltage from the shared digital analog converter. The demultiplexer demultiplexes the analog R, G, and B data voltage according the control code.
摘要:
A pixel circuitry of a display device and a display method thereof are provided herein. The pixel circuitry includes a scan switch, a storage element, and a sampling circuitry. The scan switch has a first terminal coupled to a data line and configured to be asserted according to a scan signal. The storage element is coupled to a second terminal of the scan switch and configured to store a pixel voltage from the data line. The sampling circuitry is configured to sample the stored pixel voltage of the storage element and to obtain a reference voltage for the display device according to the sampled signal. By sampling the stored pixel voltage of the storage element, whether the pixel voltages with different polarities are symmetry can be detected for avoiding flickers.
摘要:
A method for driving a dark ring of a liquid-crystal-on-silicon (LCOS) display is provided to prevent the fringe effect (bright lines) due to the constant voltage difference between the dark ring and the adjoining pixels within the LCOS display. A dark ring is divided into a plurality of portions. The polarity of each portion is controlled in accordance with the polarity of the adjoining pixels within the LCOS display and the scan direction of gate drivers such that the polarity inversion for each portion will coincide with that for the adjoining pixels within the LCOS display so as to avoid the fringe effect (bright lines).
摘要:
A pixel unit and driving method thereof are disclosed. The pixel unit includes a switch, a storage element and a first multiplexer. The switch develops a charge transfer path according to a scan signal associated with a scan line. The storage element has a first electrode coupled to the switch and a second electrode coupled to a reference voltage for receiving a pixel voltage via the charge transfer path. The first multiplexer is coupled to the second electrode of the storage element for selectively providing the reference voltage with a default value and the reference voltage with a determined value to the second electrode of the storage element according to a modulating signal. The driving method enlarges the voltage range of the first electrode of the storage element for enhancing the contrast ratio of the display panel.
摘要:
A heating system for a display panel is provided herein, wherein the display panel has a display area. The heating system includes a sensor, a temperature controlling device, and a heating element. The sensor is used for sensing the temperature of the display panel. The temperature controlling device provides a control signal according to the temperature of the display panel. The heating element heats the display panel according to the control signal, and the heating element is a patterned circuitry disposed on a peripheral region of the display area.