Abstract:
In some examples, a system includes a digital-to-analog converter (DAC) configured to operate at a clock rate; a mixer configured to up-convert an intermediate-frequency (IF) signal from the DAC to a radio-frequency (RF) signal based on a local oscillator (LO) signal; and an RF filter configured to generate a filtered signal by at least removing, from the RF signal, frequency components greater than a difference between a frequency of the LO signal and one-half of the clock rate and less than a sum of a frequency of the LO signal and one-half of the clock rate, wherein an output node of the RF filter is configured to be coupled to an antenna for transmission of the filtered signal.
Abstract:
In some examples, a system includes at least two antennas configured to receive signals encoding first, second, and third messages in first, second, and third frequency bands. The system also includes a set of splitters configured to generate separate signals in the first, second, and third frequency bands. The system further includes a set of combiners, wherein each combiner of the set of combiners is configured to combine two or more of the separate signals. The system includes a set of mixers configured to down-convert the combined signals and at least one analog-to-digital converter configured to sample the down-converted signals. The system also includes processing circuitry configured to determine data in the first, second, and third messages based on an output of the at least one analog-to-digital converter.
Abstract:
Methods and devices are disclosed driving one or more P-Intrinsic-N (PIN) diodes by receiving an input and generating a plurality of pulses based on the input, a first pulse of the plurality of pulses controls a rise time of an RF envelope generated by an RF interface and a second pulse of the plurality of pulses controls a fall time of the RF envelope generated by the RF interface. The methods and devices may further be disclosed combining the plurality of pulses to generate a drive signal, delivering the drive signal to the RF interface including one or more PIN diodes, and generating the RF envelope by driving the one or more PIN diodes with the drive signal, and the amplitude or a pulse width of the first pulse is independently adjustable from the amplitude or the pulse width of the second pulse.
Abstract:
Methods and devices are disclosed driving one or more P-Intrinsic-N (PIN) diodes by receiving an input and generating a plurality of pulses based on the input, a first pulse of the plurality of pulses controls a rise time of an RF envelope generated by an RF interface and a second pulse of the plurality of pulses controls a fall time of the RF envelope generated by the RF interface. The methods and devices may further be disclosed combining the plurality of pulses to generate a drive signal, delivering the drive signal to the RF interface including one or more PIN diodes, and generating the RF envelope by driving the one or more PIN diodes with the drive signal, and the amplitude or a pulse width of the first pulse is independently adjustable from the amplitude or the pulse width of the second pulse.
Abstract:
A device and techniques for generating and filtering a signal for transmission, such as the signal used to interrogate distance measuring equipment (DME), which may be tuned to a channel or frequency selected from a wide bandwidth. A system according to the techniques of this disclosure may generate a narrow band intermediate frequency (IF) signal with desired pulse characteristics, mix the IF signal with a local oscillator (LO) to upconvert to the desired radio frequency (RF) signal, then filter the upconverted RF signal through one of several narrow band filters in a filter bank to remove any undesired signal images. The system may select the filter from the filter bank depending on the transmitted RF frequency. In this manner the system of this disclosure may generate signals to span a wide RF bandwidth by using a narrow bandwidth IF signal generator.
Abstract:
A device and techniques for generating and filtering a signal for transmission, such as the signal used to interrogate distance measuring equipment (DME), which may be tuned to a channel or frequency selected from a wide bandwidth. A system according to the techniques of this disclosure may generate a narrow band intermediate frequency (IF) signal with desired pulse characteristics, mix the IF signal with a local oscillator (LO) to upconvert to the desired radio frequency (RF) signal, then filter the upconverted RF signal through one of several narrow band filters in a filter bank to remove any undesired signal images. The system may select the filter from the filter bank depending on the transmitted RF frequency. In this manner the system of this disclosure may generate signals to span a wide RF bandwidth by using a narrow bandwidth IF signal generator.
Abstract:
In some examples, a system includes a digital-to-analog converter (DAC) configured to operate at a clock rate; a mixer configured to up-convert an intermediate-frequency (IF) signal from the DAC to a radio-frequency (RF) signal based on a local oscillator (LO) signal; and an RF filter configured to generate a filtered signal by at least removing, from the RF signal, frequency components greater than a difference between a frequency of the LO signal and one-half of the clock rate and less than a sum of a frequency of the LO signal and one-half of the clock rate, wherein an output node of the RF filter is configured to be coupled to an antenna for transmission of the filtered signal.