Abstract:
Systems and methods for airspeed estimation using actuation signals are provided. In one embodiment, an on-board avionics airspeed estimation system is provided. The system comprises: a flight control surface for an aircraft; a control surface actuator coupled to the flight control surface, wherein the control surface actuator receives an actuator control output signal from an actuator control system and drives the flight control surface into a position based on the actuator control output signal; a wind estimator coupled to a plurality of aircraft sensors, wherein the plurality of aircraft sensors output a set of aircraft measurements to the wind estimator and wherein the actuator control output signal is further provided to the wind estimator; wherein the wind estimator calculates a wind speed estimate by applying the actuator control output and the set of aircraft measurements to an onboard aircraft model.
Abstract:
A method to filter outliers in an image-aided motion-estimation system is provided. The method includes selecting eight-image-points in a first image received from a moving imaging device at at least one processor; selecting eight-image-points in a second image that correspond to the selected eight-image-points in the first image at the at least one processor, the second image being received from the moving imaging device; scaling the selected image-points at the at least one processor so the components of the selected image-points are between two selected values on the order magnitude of 1; building an 8-by-9 matrix (A) from the scaled selected image-points at the at least one processor; determining a condition number for the 8-by-9 matrix at the at least one processor; and rejecting the 8-by-9 matrix built from the selected image-points when the determined condition number is greater than or equal to a condition-number threshold.
Abstract:
A method to filter outliers in an image-aided motion-estimation system is provided. The method includes selecting eight-image-points in a first image received from a moving imaging device at at least one processor; selecting eight-image-points in a second image that correspond to the selected eight-image-points in the first image at the at least one processor, the second image being received from the moving imaging device; scaling the selected image-points at the at least one processor so the components of the selected image-points are between two selected values on the order magnitude of 1; building an 8-by-9 matrix (A) from the scaled selected image-points at the at least one processor; determining a condition number for the 8-by-9 matrix at the at least one processor; and rejecting the 8-by-9 matrix built from the selected image-points when the determined condition number is greater than or equal to a condition-number threshold.
Abstract:
Systems and methods for inertial reference system alignment are provided. In certain embodiments, a system comprises an inertial reference system, the inertial reference system providing motion measurements; and a processing system coupled to receive the motion measurements from the inertial reference system. Further, the processing system is configured to execute instructions that direct the processing system to identify one or more frequencies in the spectrum of the motion measurements that are associated with vibrations; attenuate the motion measurements at the one or more frequencies; and use the attenuated measurements to aid in the production of navigation information.
Abstract:
Systems and methods for inertial reference system alignment are provided. In certain embodiments, a system comprises an inertial reference system, the inertial reference system providing motion measurements; and a processing system coupled to receive the motion measurements from the inertial reference system. Further, the processing system is configured to execute instructions that direct the processing system to identify one or more frequencies in the spectrum of the motion measurements that are associated with vibrations; attenuate the motion measurements at the one or more frequencies; and use the attenuated measurements to aid in the production of navigation information.
Abstract:
A method to level an inertial reference system of a helicopter with reference to the local vertical frame is provided. The method includes powering up the helicopter; outputting sensor data from at least one gyroscope and at least one accelerometer to a mode-selecting processor; executing a fast Fourier transform algorithm on the sensor data at the mode-selecting processor; and selecting one of a plurality of operation modes of the helicopter as a current-operation mode based on the execution of the fast Fourier transform algorithm.
Abstract:
A method to level an inertial reference system of a helicopter with reference to the local vertical frame is provided. The method includes powering up the helicopter; outputting sensor data from at least one gyroscope and at least one accelerometer to a mode-selecting processor; executing a fast Fourier transform algorithm on the sensor data at the mode-selecting processor; and selecting one of a plurality of operation modes of the helicopter as a current-operation mode based on the execution of the fast Fourier transform algorithm.
Abstract:
Systems and methods for airspeed estimation using actuation signals are provided. In one embodiment, an on-board avionics airspeed estimation system is provided. The system comprises: a flight control surface for an aircraft; a control surface actuator coupled to the flight control surface, wherein the control surface actuator receives an actuator control output signal from an actuator control system and drives the flight control surface into a position based on the actuator control output signal; a wind estimator coupled to a plurality of aircraft sensors, wherein the plurality of aircraft sensors output a set of aircraft measurements to the wind estimator and wherein the actuator control output signal is further provided to the wind estimator; wherein the wind estimator calculates a wind speed estimate by applying the actuator control output and the set of aircraft measurements to an onboard aircraft model.
Abstract:
Systems and methods for takeoff assistance and analysis are provided. In one embodiment, a takeoff ground roll assist system for an aircraft comprises: a runway centerline estimator, wherein the runway centerline estimator generates a virtual runway centerline estimate for a runway based on coordinates for the runway from a runway database; an (Inertial Navigation System) INS Output Filter and Fault Detector wherein the filtering of navigation measurements from an on-board inertial navigation system, using a runway centerline start point as established by activation of a pilot operated start point sensor occurs, a centerline tracking estimator coupled to receive a filtered output of the on-board inertial navigation system from the INS output filter and fault detector and to receive the virtual centerline estimate from the runway centerline estimator, wherein the centerline tracking estimator generates a centerline tracking feedback signal that varies as a function of a difference between an aircraft look-ahead point and the virtual runway centerline; and a takeoff criteria evaluator coupled to the runway centerline estimator and the centerline tracking estimator, wherein the takeoff criteria evaluator estimates a lateral deviation between the aircraft and an actual runway centerline for the runway based on an estimated navigation error component, the runway database error component, and a centerline tracking error component.