Abstract:
Embodiments of the present invention disclose a method for awaking an optical network unit in a passive optical network, including: receiving, by an optical line terminal OLT, a service packet corresponding to an ONU in an energy-saving mode, where the service packet carries a packet feature, and the packet feature indicates a service type of the service packet; detecting, by the OLT, the packet feature of the service packet; and when the packet feature of the service packet is a preset packet feature of needing to awake the ONU, awaking, by the OLT, the ONU in the energy-saving mode. According to the technical solutions provided in the embodiments of the present invention, an ONU can be awoken from an energy-saving mode in time when a traffic rate at an initial service stage is small, and a high QoS requirement of a service is met.
Abstract:
The present disclosure provides methods for secure communication. In an example method, an optical line terminal (OLT) sends a first message to an optical network unit (ONU), where the first message includes a first key algorithm, a certificate of the OLT, and a public key of the OLT, and the first key algorithm is a key algorithm supported by both the OLT and the ONU. The ONU verifies the certificate of the OLT, and after the verification succeeds, the ONU determines a shared key based on the first key algorithm and the public key of the OLT. The ONU sends a second message to the OLT, where the second message includes a certificate of the ONU and a public key of the ONU. The OLT verifies the certificate of the ONU. After the verification succeeds, the OLT determines the shared key based on the first key algorithm and the public key of the ONU.
Abstract:
Embodiments of this application provide an upstream resource grant method, a device, a passive optical network, and a computer-readable storage medium. The upstream resource grant method includes: An optical line terminal obtains an upstream grant message on which transformation processing has been performed, where a transformation parameter used for the transformation processing includes a physical identity of an optical network unit (ONU); and the optical line terminal sends the upstream grant message on which the transformation processing has been performed, where the upstream grant message carries an upstream resource grant indication of the optical network unit, and the upstream resource grant indication is used to indicate an upstream resource granted to the optical network unit. The technical solutions provided in the embodiments of this application help reduce an occurrence probability of a rogue ONU phenomenon, and further improve service running stability of a PON system.
Abstract:
A method for managing an optical network unit (ONU), an apparatus, and a system are disclosed. A message for obtaining a management mode supported by an ONU is sent, where the management mode supported by the ONU includes one or more of an OMCI mode, an OAM management mode, a NETCONF management mode, a TR069 management mode, and a SNMP management mode; a management mode sent by the ONU is received; a management mode to be used for the ONU is selected based on the management mode supported by the ONU, and is sent to the ONU. In this way, a plurality of existing management mechanisms of the ONU are compatible with each other, management of the ONU is simplified, and efficiency of managing the ONU is improved.
Abstract:
The present disclosure relates to passive optical network (PON) systems, optical line terminals (OTLs), and optical network units (ONUs). One example PON system includes an OLT and at least two ONUs. The OLT and the ONUs exchange data on one downstream channel and two upstream channels. The OLT sends downstream data to each ONU on the downstream channel, where the downstream data includes an upstream bandwidth grant used to control each ONU to send upstream data. Each ONU receives the downstream data on the downstream channel, and sends the upstream data on a first upstream channel or a second upstream channel based on the upstream bandwidth grant included in the downstream data. The OLT receives, on the first upstream channel and the second upstream channel, the upstream data sent by each ONU, where a registration function is disabled on the first upstream channel, and enabled on the second upstream channel.
Abstract:
Embodiments of this application provide a method and an apparatus for obtaining optical distribution network (ODN) logical topology information, a device, and a storage medium. The method includes: obtaining identification information of each first ONU that is connected to a first passive optical network (PON) port and whose optical path changes and feature data of the first ONU in a first time window, where the feature data includes receive optical power and/or an alarm event; obtaining, based on the feature data of each first ONU, a feature vector corresponding to each first ONU; and performing cluster analysis on the feature vector corresponding to each first ONU, to obtain topology information corresponding to the first PON port. ONU topology information is obtained by analyzing an ONU feature.
Abstract:
A bandwidth allocation method and a related device are disclosed. An exemplary method includes: when a total sum of a cumulative sum of fixed bandwidth configuration upper limits of traffic bearing entities and a cumulative sum of assured bandwidth configuration upper limits of the traffic bearing entities is greater than a maximum bandwidth value of a passive optical network (PON) port of a piece of central office equipment, determining, by the central office equipment based on a bandwidth configuration upper limit of each traffic bearing entity and a required bandwidth value of the traffic bearing entity, a bandwidth value actually allocated to the traffic bearing entity. In this way, a part of bandwidth is allocated to each traffic bearing entity. This avoids a case in which no bandwidth is allocated to some traffic bearing entities. Therefore, resource allocation is more appropriate.
Abstract:
The present disclosure relates to information transmission methods, optical line terminations (OLTs), optical network units (ONUs), and communications systems. One example method on an OLT side includes allocating, by the OLT, an identifier to a first ONU through a first channel, performing, through the first channel, ranging on the first ONU to obtain ranging information about the first channel, and after determining, by the OLT and the ONU through negotiation, to use two channels to perform information transmission, performing, by the OLT, data transmission of a first service with the first ONU through a second channel.
Abstract:
Embodiments of this application provide a method and an apparatus for obtaining optical distribution network (ODN) logical topology information, a device, and a storage medium. The method includes: obtaining identification information of each first ONU that is connected to a first passive optical network (PON) port and whose optical path changes and feature data of the first ONU in a first time window, where the feature data includes receive optical power and/or an alarm event; obtaining, based on the feature data of each first ONU, a feature vector corresponding to each first ONU; and performing cluster analysis on the feature vector corresponding to each first ONU, to obtain topology information corresponding to the first PON port. ONU topology information is obtained by analyzing an ONU feature.
Abstract:
The present invention discloses a dynamic bandwidth assignment method and apparatus on a PON, where the method includes: determining length information of at least one data packet in a cache queue of a T-CONT; determining, according to the length information of the at least one data packet, a total length of at least one GEM frame that is corresponding to the at least one data packet and is obtained when the at least one data packet is separately encapsulated into a GEM frame; and sending a DBRu to an OLT according to the total length of the at least one GEM frame, so that the OLT assigns bandwidth to the T-CONT according to the DBRu. According to the dynamic bandwidth assignment method and apparatus in the embodiments of the present invention, bandwidth of a system can be saved, and overall performance of the system can be improved.