Abstract:
One example antenna apparatus includes S groups of antenna bays, S groups of phase-shift feeding networks, and S beamforming networks. An ith group of antenna bays include Ni bays, an ith group of phase-shift feeding networks include Ni phase-shift feeding networks, and the Ni bays are connected to the Ni phase-shift feeding networks. In a first state, an ith beamforming network is configured to form ni beams corresponding to the Ni bays, where Ni first ports corresponding to the beamforming network are connected to the Ni phase-shift feeding networks, ni second ports corresponding to the beamforming network are connected to ni antenna ports, and ni is less than Ni. In a second state, an ith beamforming network is configured to form Ni beams corresponding to the Ni bays, where Ni first ports corresponding to the beamforming network are connected to the Ni phase-shift feeding networks, and Ni second ports corresponding to the beamforming network are connected to Ni antenna ports.
Abstract:
Embodiments of the present invention disclose a feeding network, and the feeding network includes: a first balun device of a first feeding subnetwork, where the first balun device is connected to a PCB positive 45-degree polarized port, which results in an equal amplitude and a 180-degree phase difference of signals at the first positive 45-degree polarized output port and the second positive 45-degree polarized output port; and a second balun device of a second feeding network, where the second balun device is connected to a PCB negative 45-degree polarized port, which results in an equal amplitude and a 180-degree phase difference of signals at the first negative 45-degree polarized output port and the second negative 45-degree polarized output port. The feeding network in the embodiments has a relatively small size and can cover multiple frequency bands.
Abstract:
An antenna includes: at least three radio frequency interfaces and a feed network, where each of the radio frequency interfaces is connected to a radio frequency channel between the radio frequency interface and a RRU. A first interface is configured to receive a signal from the RRU, and transmit the signal to a second interface by using the feed network. The second interface is configured to send the signal to the RRU. The feed network includes a main feed circuit, a calibration signal circuit, and a switch. The calibration signal circuit is configured to transmit a calibration signal from the first interface to the second interface, where the calibration signal is used to calibrate a phase and an amplitude of the radio frequency channel connected to the first interface. The switch is configured to isolate the calibration signal from a signal on the main feed circuit.
Abstract:
An antenna includes: at least three radio frequency interfaces and a feed network, where each of the radio frequency interfaces is connected to a radio frequency channel between the radio frequency interface and a RRU. A first interface is configured to receive a signal from the RRU, and transmit the signal to a second interface by using the feed network. The second interface is configured to send the signal to the RRU. The feed network includes a main feed circuit, a calibration signal circuit, and a switch. The calibration signal circuit is configured to transmit a calibration signal from the first interface to the second interface, where the calibration signal is used to calibrate a phase and an amplitude of the radio frequency channel connected to the first interface. The switch is configured to isolate the calibration signal from a signal on the main feed circuit.