Abstract:
A memory extensible chip (200) is provided. The chip (200) includes a substrate (240), and a processor (230), a first memory module set (210), and a second memory module set (220) that are integrated on the substrate (240). The processor (230) communicates with at least one memory module in the first memory module set (210) using a first communications interface (250), and the processor (230) communicates with at least one memory module in the second memory module set (220) using a second communications interface (260). A memory module in the first memory module set (210) communicates with a memory module in the second memory module set (220) using a substrate network, where the substrate network is a communications network located inside the substrate (240). In this way, the processor (230) can access a memory module in the first memory module set (210) by using the second memory module set (220).
Abstract:
Embodiments of the present disclosure provide a data transmission method, which can meet a requirement for an Ethernet network with diversified rate levels. The method includes: grouping media access control (MAC) layer data into a plurality of MAC layer data groups; allocating, according to a bandwidth required by a target MAC layer data group and a reference bandwidth of a logical channel, at least one target logical channel to the target MAC layer data group; encoding the target MAC layer data group to generate target physical layer data, where the target logical channel corresponds to the target MAC layer data group and the target physical layer data; and sending the target physical layer data and first indication information, where the first indication information is used to indicate a relationship between the target physical layer data and the target logical channel.
Abstract:
The present invention discloses an apparatus and a method for transporting an ODU service. The transport apparatus includes a first ODU service processing unit, a timeslot allocation unit, a switching output port allocation unit, an Ethernet switching unit, and a second ODU service processing unit, where a table of a mapping between output ports of the first ODU service processing unit and timeslots is determined according to a rate of an ODUflex frame carried in an obtained ODU service and the number of the output ports of the first ODU service processing unit, and the ODU service is forwarded, which resolves a problem in the prior art that an ODUflex frame cannot be transported by using the Ethernet switching unit, thereby ensuring that service congestion does not occur on a forwarding port of a sending apparatus, and improving transmission quality of a communications network.