摘要:
The disclosure relates to an audio signal processing apparatus for processing an input audio signal, comprising a filter unit comprising a plurality of filters, each filter configured to filter the input audio signal to obtain a plurality of filtered audio signals, each filter designed according to an extended mode matching beamforming applied to a surface of a half revolution, the surface partially characterizing a loudspeaker enclosure shape, a plurality of scaling units, each scaling unit configured to scale the plurality of filtered audio signals using a plurality of gain coefficients to obtain a plurality of scaled filtered audio signals, and a plurality of adders, each adder configured to combine the plurality of scaled filtered audio signals, thereby providing an output audio signal for producing a sound field having a beam directivity pattern defined by the plurality of gain coefficients.
摘要:
An audio signal processing apparatus for processing an input audio signal is provided, the apparatus comprising a plurality of filters, each filter configured to filter the input audio signal to obtain a plurality of filtered audio signals, each filter designed according to an extended mode matching beamforming applied to a surface of a half revolution, the surface partially characterizing a loudspeaker enclosure shape, a plurality of scaling units, each scaling unit configured to scale the plurality of filtered audio signals using a plurality of gain coefficients to obtain a plurality of scaled filtered audio signals, and a plurality of adders, each adder configured to combine the plurality of scaled filtered audio signals, thereby providing an output audio signal for producing a sound field having a beam directivity pattern defined by the plurality of gain coefficients.
摘要:
The disclosure relates to an apparatus for generating a sound field on the basis of an input audio signal. The apparatus comprises a plurality of transducers, wherein each transducer is configured to be driven by a transducer driving signal ql of the respective transducer; a plurality of filters configured to generate for each transducer the transducer driving signal ql of the respective transducer; and a control unit configured to provide or receive a first transducer driving signal vector q0 of dimension L such that the gradient of J(q;ψ) with respect to q is zero in (q0;ψ0), the control unit is further configured to provide a second transducer driving signal vector {tilde over (q)} of dimension L such that the gradient of the cost function J(q;ψ) with respect to q is [approximately] zero in ({tilde over (q)}; {tilde over (ψ)}), the control unit is configured to provide the second transducer driving signal vector {tilde over (q)}.
摘要:
An apparatus for estimating an overall mixing time, where the apparatus comprises a processing element configured to determine differences between energy profiles of a first room impulse response of the first pair of room impulse responses and a second room impulse response of the first pair of room impulse responses at a plurality of different sample times of the first pair of room impulse responses, set a sample time of the plurality of sample times as a mixing time for the first pair of room impulse responses at which the difference between the energy profiles of the first room impulse response and the second room impulse response of the first pair of room impulse responses is equal to or below a threshold value, and determine the overall mixing time based on the mixing time for the first pair of room impulse responses.
摘要:
A sound field device is disclosed that comprises an elevation cue estimator, a low-frequency filter estimator, and a high-frequency filter estimator. The elevation cue-estimator is configured to estimate an elevation cue of a head-related transfer function (HRTF) of at least one listener. The low-frequency filter estimator is configured to estimate one or more low-frequency filter elements based on the elevation cue. The high-frequency filter estimator is configured to estimate one or more high-frequency filter elements based on the elevation cue. An estimation method of the low-frequency filter estimator is different from an estimation method of the high-frequency filter estimator. The one or more low-frequency filter elements and the one or more high-frequency filter elements are for driving an array of loudspeakers to generate an elevated sound impression at a bright zone.
摘要:
The disclosure relates to a microphone assembly (100) for acquiring a plurality of audio signals, wherein the microphone assembly (100) has a reconfigurable geometry so that the microphone assembly (100) may be configured to be embedded in or attached to a body. The microphone assembly (100) comprises: a plurality of digital microphones (101a-h) configured to convert the sound signal impinging on each digital microphone into a corresponding digital electrical signal, a digital signal processing unit (102) comprising a serial digital communication interface (102a) and a processor (102b), and a connecting and mounting structure configured to provide a flexible electrical connection and a flexible mechanical arrangement for the plurality of digital microphones (101a-h).
摘要:
An apparatus for estimating an overall mixing time, where the apparatus comprises a processing element configured to determine differences between energy profiles of a first room impulse response of the first pair of room impulse responses and a second room impulse response of the first pair of room impulse responses at a plurality of different sample times of the first pair of room impulse responses, set a sample time of the plurality of sample times as a mixing time for the first pair of room impulse responses at which the difference between the energy profiles of the first room impulse response and the second room impulse response of the first pair of room impulse responses is equal to or below a threshold value, and determine the overall mixing time based on the mixing time for the first pair of room impulse responses.
摘要:
The disclosure relates to a microphone assembly (100) for acquiring a plurality of audio signals, wherein the microphone assembly (100) has a reconfigurable geometry so that the microphone assembly (100) may be configured to be embedded in or attached to a body. The microphone assembly (100) comprises: a plurality of digital microphones (101a-h) configured to convert the sound signal impinging on each digital microphone into a corresponding digital electrical signal, a digital signal processing unit (102) comprising a serial digital communication interface (102a) and a processor (102b), and a connecting and mounting structure configured to provide a flexible electrical connection and a flexible mechanical arrangement for the plurality of digital microphones (101a-h).
摘要:
The present disclosure relates to a method and to an apparatus, both arranged for controlling acoustic signals to be recorded or reproduced by an electro-acoustical sound system. An initial digital filter is determined by solving an inverse problem, wherein the initial digital filter is configured to control acoustic signals to be recorded and/or reproduced by the electro-acoustical sound system; a frequency-dependent articulation parameter is determined by executing a time spectral psychoacoustic automatic audio quality test on the initial digital filter; a frequency-dependent regularization parameter, used for determining the initial digital filter, is tuned by use of the frequency-dependent articulation parameter; and, by use of the tuned frequency-dependent regularization parameter, a digital filter configured to control acoustic signals to be recorded or reproduced by the electro-acoustical sound system is determined.
摘要:
A sound field device is disclosed that comprises an elevation cue estimator, a low-frequency filter estimator, and a high-frequency filter estimator. The elevation cue-estimator is configured to estimate an elevation cue of a head-related transfer function (HRTF) of at least one listener. The low-frequency filter estimator is configured to estimate one or more low-frequency filter elements based on the elevation cue. The high-frequency filter estimator is configured to estimate one or more high-frequency filter elements based on the elevation cue. An estimation method of the low-frequency filter estimator is different from an estimation method of the high-frequency filter estimator. The one or more low-frequency filter elements and the one or more high-frequency filter elements are for driving an array of loudspeakers to generate an elevated sound impression at a bright zone.