Abstract:
A method for estimating a rotation axis and a mass center of a spatial target based on binocular optical flows. The method includes: extracting feature points from binocular image sequences sequentially and respectively, and calculating binocular optical flows formed thereby; removing areas ineffective for reconstructing a three-dimensional movement trajectory from the binocular optical flows of the feature points, whereby obtaining effective area-constrained binocular optical flows, and reconstructing a three-dimensional movement trajectory of a spatial target; and removing areas with comparatively large errors in reconstructing three-dimensional motion vectors from the optical flows by multiple iterations, estimating a rotation axis according to a three-dimensional motion vector sequence of each of the feature points obtained thereby, obtaining a spatial equation of an estimated rotation axis by weighted average of estimated results of the feature points, and obtaining spatial coordinates of a mass center of the target according to two estimated rotation axes.