POLYMER MULTI-MATERIAL HIGH-FLEXIBILITY LASER ADDITIVE MANUFACTURING SYSTEM AND METHOD THEREOF

    公开(公告)号:US20200031057A1

    公开(公告)日:2020-01-30

    申请号:US16248296

    申请日:2019-01-15

    Abstract: The invention belongs to the field of filament additive manufacturing, and discloses a polymer multi-material high-flexibility laser additive manufacturing system and a method thereof. The system comprises a first robot arm, a second robot arm, a positioner, a rotational extrusion nozzle in which a plurality of extrusion modules are disposed and a laser, each extrusion module is used for extruding one kind of filament, and the rotational extrusion nozzle is connected with the first robot which drives the rotational extrusion nozzle to move according to a preset trajectory; the laser is connected with the second robot, and is used for emitting a laser to fuse the filament extruded from the rotational extrusion nozzle, and through the cooperative motion of the first robot and the second robot, the extrusion and fusion of the filament are performed synchronously; the positioner serves as a forming mesa, and the rotation of the positioner cooperates with the motions of the two robots. With the present invention, problems such as easy blocking and short service life of the extrusion nozzle in the FDM forming are solved, thereby ensuring high flexibility of the manufacturing system and achieving the extrusion forming of the multi-material filaments.

    INDEPENDENTLY TEMPERATURE-CONTROLLED HIGH-TEMPERATURE SELECTIVE LASER SINTERING FRAME STRUCTURE

    公开(公告)号:US20200114583A1

    公开(公告)日:2020-04-16

    申请号:US16357791

    申请日:2019-03-19

    Abstract: The present disclosure belongs to the technical field of advanced manufacturing auxiliary equipment, and discloses an independently temperature-controlled high-temperature selective laser sintering frame structure, comprising a galvanometric laser scanning system, a powder feeding chamber, a forming chamber and a heat-insulating composite plate, and targeted optimization design is performed on the respective functional components. According to the invention, the independently temperature-controlled frame structure can simultaneously ensure the uniformity of the powder preheating temperature field of the powder feeding chamber platform and the uniformity of the processing temperature field of the forming chamber platform, so that powder on the powder feeding chamber platform can reach the sinterable temperature before being conveyed, and conveyance of cold powder to the sintered melt is avoided, thereby reducing the possibility of warpage of the parts while reducing actual sintering delay time and improving actual sintering efficiency. The independently temperature-controlled frame structure of the present disclosure is particularly suitable for high-temperature laser sintering of high-performance polymers such as polyaryletherketones and aromatic polyamides at 400° C.

    MULTI-FIELD COMPOSITE-BASED ADDITIVE MANUFACTURING DEVICE AND MULTI-FIELD COMPOSITE-BASED ADDITIVE MANUFACTURING METHOD

    公开(公告)号:US20230027566A1

    公开(公告)日:2023-01-26

    申请号:US17785914

    申请日:2020-11-26

    Abstract: The present invention belongs to the technical field related to additive manufacturing, and provides a multi-field composite-based additive manufacturing device and method. The device comprises a powder delivery adjustment module, a sound field control module, a microwave field/thermal field control module and a microprocessor. The powder delivery adjustment module, the sound field control module and the microwave field/thermal field control module are respectively connected to the microprocessor; the powder delivery adjustment module comprises a raw material dispersion chamber, and the raw material dispersion chamber is provided within a forming cavity formed by a housing; the sound field control module is also provided within the forming cavity and is located below the raw material dispersion chamber; the microwave field/thermal field control module comprises a plurality of microwave generators provided in the forming cavity, the plurality of microwave generators are respectively located at two sides of a forming area.

Patent Agency Ranking