摘要:
A vibrating tip surface enhanced Raman spectroscopy (SERS) apparatus, system and method employ a nano-needle configured to vibrate. The apparatus includes the nano-needle with a substantially sharp tip at a free end opposite an end attached to a substrate. The tip is configured to adsorb an analyte. The apparatus further includes a vibration source configured to provide an alternating current (AC) electric field that induces a vibration of the free end and the tip of the nano-needle. Vibration of the nano-needle under the influence of the AC electric field facilitates detection of a Raman scattering signal from the analyte adsorbed on the nano-needle tip. The system further includes a synchronous detector configured to be gated cooperatively with the vibration of the nano-needle. The method includes inducing the vibration, illuminating the vibrating tip to produce a Raman signal, and detecting the Raman signal using the detector.
摘要:
A vibrating tip surface enhanced Raman spectroscopy (SERS) apparatus, system and method employ a nano-needle configured to vibrate. The apparatus includes the nano-needle with a substantially sharp tip at a free end opposite an end attached to a substrate. The tip is configured to adsorb an analyte. The apparatus further includes a vibration source configured to provide an alternating current (AC) electric field that induces a vibration of the free end and the tip of the nano-needle. Vibration of the nano-needle under the influence of the AC electric field facilitates detection of a Raman scattering signal from the analyte adsorbed on the nano-needle tip. The system further includes a synchronous detector configured to be gated cooperatively with the vibration of the nano-needle. The method includes inducing the vibration, illuminating the vibrating tip to produce a Raman signal, and detecting the Raman signal using the detector.
摘要:
A nanorod surface enhanced Raman spectroscopy (SERS) apparatus, system and method of SERS using nanorods that are activated with a key. The nanorod SERS apparatus includes a plurality of nanorods, an activator to move the nanorods from an inactive to an active configuration and the key to trigger the activator. The nanorod SERS system further includes a Raman signal detector and an illumination source. The method of SERS using nanorods includes activating a plurality of nanorods with the key, illuminating the activated plurality of nanorods, and detecting a Raman scattering signal when the nanorods are in the active configuration.
摘要:
A light amplifying structure 100 for Raman spectroscopy includes a a resonant cavity 108. A distance between a first portion 102B and a second portion 102A of the structure 100 forming the resonant cavity 108 is used to amplify excitation light emitted from a light source 420 into the resonant cavity 108 at a first resonant frequency of the resonant cavity 108. Also, the resonant cavity 108 amplifies radiated light radiated from a predetermined molecule excited by the excitation light in the resonant cavity at a second resonant frequency of the resonant cavity 108.
摘要:
An optical heterodyne device includes an optical meta-material exhibiting non-linear behavior. The optical meta-material mixes an input signal and a local signal to produce a heterodyne signal.
摘要:
A solid core, multi-channel optical coupler comprising an elongate mixer body having an input end, an output end and sidewalls forming a length of the mixer body, where the input end is configured for coupling to a plurality of input channels providing an optical signal for transmission through the mixer body, and a plurality of output tapers coupled to the output end. Each of the output tapers has a reception area adjacent the output end of the mixer body for receiving a portion of the optical signal transmitted through the mixer body. Furthermore, the reception area of each output taper is variable to vary the intensity of the optical signal received by the output taper.
摘要:
A solid core, multi-channel optical coupler comprising an elongate mixer body having an input end, an output end and sidewalls forming a length of the mixer body, where the input end is configured for coupling to a plurality of input channels providing an optical signal for transmission through the mixer body, and a plurality of output tapers coupled to the output end. Each of the output tapers has a reception area adjacent the output end of the mixer body for receiving a portion of the optical signal transmitted through the mixer body. Furthermore, the reception area of each output taper is variable to vary the intensity of the optical signal received by the output taper.
摘要:
A photonic guiding device and methods of making and using are disclosed. The photonic guiding device comprises a large core hollow waveguide configured to interconnect electronic circuitry on a circuit board. A reflective coating covers an interior of the hollow waveguide to provide a high reflectivity to enable light to be reflected from a surface of the reflective coating. A collimator is configured to collimate multi-mode coherent light directed into the hollow waveguide.
摘要:
A photonic guiding device and methods of making and using are disclosed. The photonic guiding device comprises a large core hollow waveguide configured to interconnect electronic circuitry on a circuit board. A reflective coating covers an interior of the hollow waveguide to provide a high reflectivity to enable light to be reflected from a surface of the reflective coating. A collimator is configured to collimate multi-mode coherent light directed into the hollow waveguide.
摘要:
A photonic guiding device and methods of making and using are disclosed. The photonic guiding device comprises a large core hollow waveguide configured to interconnect electronic circuitry on a circuit board. A reflective coating covers an interior of the hollow waveguide to provide a high reflectivity to enable light to be reflected from a surface of the reflective coating. A collimator is configured to collimate multi-mode coherent light directed into the hollow waveguide.