Abstract:
A method for efficiently operating a vehicle wheel balancing system having a wheel mounting structure upon which a vehicle wheel assembly is mounted for rotation during a measurement or service procedure, and a load roller assembly disposed in operative proximity to the wheel mounting structure for engaging a surface of the vehicle wheel assembly and applying a controlled load there to during rotation. After mounting a vehicle wheel assembly to the mounting structure, the wheel assembly is rotationally driven and a measurement of imbalance is initially acquired and the results displayed to an operator. Subsequently, the load roller assembly is engaged with the still rotating wheel, while measurements of radial forces and/or runout of the wheel are acquired, before the wheel rotation is stopped.
Abstract:
A vehicle service or inspection system including a load roller for applying a radial load to a vehicle wheel assembly consisting of a tire mounted to a rim, with at least one sensor for acquiring measurements of acoustical energy generated by the wheel assembly during loaded rotational movement. The vehicle service or inspection system is configured with a programmed processor to evaluate the acquired measurements to provide a measure of tire road noise, identification of tire defects, and/or identification of sources of noise, vibrations, or acoustical energy on the tire surface such as tire flat spots, cupping, bubbles, embedded foreign objects, or other defects. The processor is further configured with software instructions to utilize the acquired measurements to provide a consumer with a figure of merit associated with the acoustics of the tire undergoing testing
Abstract:
A method for efficiently operating a vehicle wheel balancing system having a wheel mounting structure upon which a vehicle wheel assembly is mounted for rotation during a measurement or service procedure, and a load roller assembly disposed in operative proximity to the wheel mounting structure for engaging a surface of the vehicle wheel assembly and applying a controlled load there to during rotation. After mounting a vehicle wheel assembly to the mounting structure, the wheel assembly is rotationally driven and a measurement of imbalance is initially acquired and the results displayed to an operator. Subsequently, the load roller assembly is engaged with the still rotating wheel, while measurements of radial forces and/or runout of the wheel are acquired, before the wheel rotation is stopped.
Abstract:
A tire changer with a controller includes a with a mount assembly adapted for contacting a wheel assembly to mount the wheel to a rotating spindle. The tire changer controller is configured to regulate the operation of a motor, and which is operatively connected to the rotating spindle to rotate the wheel assembly. A sensor coupled to the controller provides a data representative of the rotational position of the wheel assembly about a rotational axis. The controller is further configured to engage a load roller with the wheel assembly to apply a radial force to a tire mounted on a rim of the wheel assembly during rotation of the wheel, and to regulate the operation of a tire handling means and mount assembly, enabling identification, optional marking, and adjustment of the tire angular mounting position relative to the wheel rim.
Abstract:
A method by which a vehicle wheel service system, having at least one load roller for applying a generally radial load to a wheel assembly mounted on a driven spindle shaft during rotation thereof, provides a measurement which is representative of the loaded rolling resistance of the wheel assembly undergoing testing. In order to rotationally drive the spindle shaft with the vehicle wheel assembly mounted there on, energy is supplied to a drive motor operatively coupled to rotationally drive the spindle shaft. By monitoring the amount of energy or drive torque required to rotationally drive the spindle shaft and achieve and maintain a desired rotational speed for the wheel assembly when engaged with the load roller, a measurement which is related to the loaded rolling resistance of the wheel assembly is obtained by the vehicle wheel balancing system.
Abstract:
Tire changing machines including force and position sensors facilitating automated detection of wheel rim and tire features by a controller. Dimensional and location information for features of interest may be detected and recorded for use by the controller to perform tire change procedures. Positioning error and malfunctioning machine components, including feedback sensors, may also be detected in an automated manner.
Abstract:
A vehicle service or inspection system including a load roller for applying a radial load to a vehicle wheel assembly consisting of a tire mounted to a rim, with at least one sensor for acquiring measurements of acoustical energy generated by the wheel assembly during loaded rotational movement. The vehicle service or inspection system is configured with a programmed processor to evaluate the acquired measurements to provide a measure of tire road noise, identification of tire defects, and/or identification of sources of noise, vibrations, or acoustical energy on the tire surface such as tire flat spots, cupping, bubbles, embedded foreign objects, or other defects. The processor is further configured with software instructions to utilize the acquired measurements to provide a consumer with a figure of merit associated with the acoustics of the tire undergoing testing.