摘要:
Disclosed is an apparatus for making tubular-shaped membrane electrode assembly. The apparatus includes a guiding unit for guiding the direction of MEA production, a first weaving unit for weaving conductive fiber bundles into a first tubular conductive fabric around the guiding unit, a first catalyst-providing unit for forming a first catalyst film on the first tubular conductive fabric, a proton-exchange-membrane-providing unit for providing a proton-exchange-membrane on the first catalyst film, a second catalyst-providing unit for forming a second catalyst film on the proton-exchange-membrane, a second weaving unit for weaving conductive fiber bundles into a second tubular conductive fabric on the second catalyst film and a cooling and pulling unit for cooling and pulling the first tubular conductive fabric, the first catalyst film, the proton-exchange-membrane, the second catalyst film and the second tubular conductive fabric into a tubular laminate.
摘要:
Two catalyst electrode layers (CEL) are separately formed on two surfaces of a proton exchange membrane (PEM). The structure and processes are simple in the present invention for obtaining a membrane exchange assembly (MEA) with its thickness controllable. The MEA obtained can have a structure of CEL+PEM+CEL′. If a gas diffusion layer (GDL) is added before obtaining the CEL, a MEA having a structure of GDL+CEL+PEM+CEL′+GDL′ is obtained.
摘要:
Disclosed is an apparatus for making tubular-shaped membrane electrode assembly. The apparatus includes a guiding unit (or guiding rod or guiding tube or guiding wire) for guiding the direction of MEA production, a first weaving unit for weaving conductive fiber bundles into a first tubular conductive fabric around the guiding unit, a first catalyst-providing unit for forming a first catalyst film on the first tubular conductive fabric, a proton-exchange-membrane-providing unit for providing a proton-exchange-membrane on the first catalyst film, a second catalyst-providing unit for forming a second catalyst film on the proton-exchange-membrane, a second weaving unit for weaving conductive fiber bundles into a second tubular conductive fabric on the second catalyst film and a cooling and pulling unit for cooling and pulling the first tubular conductive fabric, the first catalyst film, the proton-exchange-membrane, the second catalyst film and the second tubular conductive fabric into a tubular laminate. The tubular laminate can be cut into tubular-shaped membrane electrode assembly of appropriate lengths.
摘要:
A proton exchange membrane (PEM) is made. The PEM has a high relational selective coefficient. This means the PEM of the present invention can better confine methanol yet still remains good methanol conducting capacity. The present invention has an easy fabrication process with no additional material needed. And the present invention can be used in a fuel cell like DMFC or H01M008/10.
摘要:
Electrode catalyst slurry and a tubular conductive layer with leading wire are adhered on the inner and outside surface of a tubular proton membrane to be heated and pressed, where the leading wire of the tubular conductive layer and a conductive coating are formed into a whole without electroplating while avoiding the characteristic change of the electrode catalyst; and where the leading wire is led along the surface of the membrane with the characteristics of avoiding jamming the spindle space and of no side floss.
摘要:
Two catalyst electrode layers (CEL) are separately formed on two surfaces of a proton exchange membrane (PEM). The structure and processes are simple in the present invention for obtaining a membrane exchange assembly (MEA) with its thickness controllable. The MEA obtained can have a structure of CEL+PEM+CEL′. If a gas diffusion layer (GDL) is added before obtaining the CEL, a MEA having a structure of GDL+CEL+PEM+CEL′+GDL′ is obtained.
摘要:
Electrode catalyst slurry and a tubular conductive layer with leading wire are adhered on the inner and outside surface of a tubular proton membrane to be heated and pressed, where the leading wire of the tubular conductive layer and a conductive coating are formed into a whole without electroplating while avoiding the characteristic change of the electrode catalyst; and where the leading wire is led along the surface of the membrane with the characteristics of avoiding jamming the spindle space and of no side floss.