Abstract:
The invention concerns, in one aspect, an actuator for generating a bidirectional force intended for being integrated into a deformable mirror comprising a deformable reflective substrate. Said actuator comprises a stationary body (10); a drive device; a drive rod (20) able to be driven in a translatory movement with respect to the stationary body (10), along an axis of translation (xx′), by means of the drive device; a floating head (30) designed to be attached to the deformable reflective substrate, and mounted in floating manner with respect to the drive rod via first and second elastic means (33, 35). The first and second elastic means (33, 35) are each mounted between the drive rod (20) and the floating head (30) and are designed to apply forces to the floating head, whose projections on the translation axis (xx′) are of opposite directions.
Abstract:
The invention concerns, in one aspect, an actuator for generating a bidirectional force intended for being integrated into a deformable mirror comprising a deformable reflective substrate. Said actuator comprises a stationary body (10); a drive device; a drive rod (20) able to be driven in a translatory movement with respect to the stationary body (10), along an axis of translation (xx′), by means of the drive device; a floating head (30) designed to be attached to the deformable reflective substrate, and mounted in floating manner with respect to the drive rod via first and second elastic means (33, 35). The first and second elastic means (33, 35) are each mounted between the drive rod (20) and the floating head (30) and are designed to apply forces to the floating head, whose projections on the translation axis (xx′) are of opposite directions.
Abstract:
Methods and devices for reducing the dimensions of an incident light beam of large dimensions are disclosed. The method includes the dispatching of a first light beam toward a partially reflecting plate of dimensions suitable for the dimensions of the light beam of large dimensions, the dispatching onto a convergent reflective element of a second light beam arising from the transmission through the partially reflecting plate of the first light beam, the dispatching of a third light beam arising from the reflection on the convergent reflective element of the second light beam, toward said partially reflecting plate, and the reflection of the third beam on the partially reflecting plate so as to form a fourth light beam.
Abstract:
A method for analyzing the surface quality of a substrate may include emitting a first light beam incident on a first face of said substrate, receiving a first reflected beam resulting from the reflection of the first beam by the first face and a second reflected beam resulting from a reflection by a second face of the substrate in order to generate at least a first measurement signal characteristic of a combination of the wavefronts of the first and second reflected beams, receiving a transmission beam resulting from transmission of the substrate by a second light beam in order to generate a second measurement signal, and calculating, from the first and second measurement signals, a first signal and a second signal representative of a deformation of the first face and the second face respectively.