Abstract:
A defect detection device enables easy removal of magnetic impurities. The defect detection device has a structure capable of effectively removing magnetic impurities adhered to a magnetic flux leakage detection device for nondestructive inspection of a small-diameter heat transfer tube or a partially saturated eddy current detection system. With the defect detection device, it is possible to minimize adhesion of magnetic impurities that deteriorate the performance of a leakage magnetic flux detection device for nondestructive inspection of a small-diameter tube of ferromagnetic metal material or a partially saturated eddy current detection system. Further, there is an advantage in that it is possible to remove the adhered magnetic impurities from the defect detection device easily.
Abstract:
Disclosed herein are an apparatus and a method for detecting a crack. The apparatus includes a power supply unit, a sensor module, and a signal reception module. The power supply unit supplies power. The sensor module receives the input power from the power supply unit, and outputs sensing power corresponding to the magnetic field of an object to be measured. The signal reception unit converts the sensing power output from the sensor module into a quantitative value, and computes the distribution of the magnetic field. The sensor module includes a first sensor array configured to detect magnetic field vectors in a direction vertical to a sensor surface, and a second sensor array placed on the first sensor array in an overlapping manner and configured to detect magnetic field vectors in a direction lateral with respect to the sensor surface.
Abstract:
Disclosed herein are a probe for a nondestructive testing device using a crossed gradient induced current and a method of manufacturing an induction coil for a nondestructive testing device. The probe for a nondestructive testing device using a crossed gradient induced current includes an induction coil formed to have a predetermined width and to generate first and second induced currents in a direction crossing each other when a current is applied from a power supply, and a magnetic sensor part installed adjacent to the induction coil so as to measure the first and second induced currents induced from the induction coil.
Abstract:
Disclosed is an eddy current inspection device for nondestructive testing. The device includes: a bobbin-shaped coil configured to be inserted into a specimen, which is an object of nondestructive testing, and to apply induction current to an inner diameter of the specimen; a reference coil configured to be inserted into a nondestructive specimen, which is a reference of the specimen, and to apply induction current to an inner diameter of the nondestructive specimen; a cylindrical manual sensor array configured to disposed in the bobbin-shaped coil and to include lines and rows; and a control module configured to select one or more frequencies of multiple frequencies, apply AC power to the bobbin-shaped coil and the reference coil, generate a square wave signal with a varying phase difference, and perform first multiplication by an applied signal and the square wave signal. Accordingly, it is possible to accurately detect a flaw.
Abstract:
Disclosed herein are an apparatus and method for detecting a crack in a small-bore piping system. The apparatus includes a sensor unit, a bobbin coil, a power supply unit, and a signal reception unit. The sensor unit is configured such that a plurality of magnetic sensors is arranged thereon and formed to be cylindrical. The bobbin coil is wound around the outside surface of the sensor unit. The power supply unit applies direct current (DC) power to the sensor unit and alternating current (AC) power to the bobbin coil. The signal reception unit quantifies a signal from the sensor unit. The sensor unit detects the distribution of a magnetic-field attributable to the crack in the small-bore piping system based on the AC power applied to the bobbin coil.