Abstract:
An air flow distribution system for cooling server racks includes at least one server rack partially defining a hot aisle and a cold aisle, a first air foil disposed above the server rack, and a second air foil disposed above the first air foil. The first air foil and the second air foil are configured to receive air from the hot aisle, and to form turbulent wake patterns in the cold aisle partially defined by the server rack. The air flow distribution system may include a convex ceiling member above the second air foil. A corresponding method includes causing air to be directed between a first air foil disposed above a server rack and a second air foil disposed above the first air foil to form turbulent wake patterns in the cold aisle. An electrical enclosure assembly includes a receptacle and a cover member configured as an air foil.
Abstract:
Systems and methods relating to a plural in-series pumped liquid refrigerant trim evaporator cycle are described. The cooling systems include a first evaporator coil in thermal communication with an air intake flow to a heat load, and a first liquid refrigerant distribution unit in thermal communication with the first evaporator coil. The cooling systems further include a second evaporator coil disposed in series with the first evaporator coil in the air intake flow and in thermal communication with the air intake flow, and a second liquid refrigerant distribution unit in thermal communication with the second evaporator coil. A trim compression cycle of the second liquid refrigerant distribution unit is configured to further cool the air intake flow through the second evaporator coil when the temperature of the first fluid flowing out of the main compressor of the second liquid refrigerant distribution unit exceeds a predetermined threshold temperature.
Abstract:
A cooling assembly for cooling server racks includes a server rack enclosure sub-assembly that includes at least one panel member defining a volume for receiving one or more server racks having a front portion and a rear portion, at least one of the panel members is a rear panel member; at least one frame member defines an opening for receiving the rear portion of the server racks to form a hot space between the rear panel member and the combination of the frame member and the rear portion of the server racks; a cooling sub-assembly disposed in thermal communication with the hot space to cool at least one server supported in the server rack and including a chassis receiving at least one heat exchange member for exchanging heat between a refrigerant fluid flowing through the heat exchange member and fluid flowing through the hot space heated by the server.
Abstract:
Systems and methods for cooling an inverter of a variable frequency drive that drives a compressor in a cooling system for electronic equipment are disclosed. The system includes a first fluid circuit that cools electronic equipment using a first fluid flowing therethrough and a second fluid circuit that free cools a second fluid flowing therethrough. The second fluid circuit cools the first fluid using the free-cooled second fluid. The system further includes a third fluid circuit that mechanically cools the second fluid using a third fluid flowing therethrough as a function of the wet bulb temperature of atmospheric air. The third fluid circuit includes at least one compressor compresses the third fluid and is driven by a motor coupled to the variable frequency drive. At least a portion of the first fluid flowing through the third fluid circuit is diverted to cool the inverter of the variable frequency drive.
Abstract:
The present disclosure relates to a cooling system including a controlled atmospheric heat rejection cycle with water re-capture. The cooling system for cooling a heat load includes a first evaporative section configured to circulate a first fluid to enable heat transfer from the heat load to the first fluid, a second evaporative section in fluid communication with the first evaporative section and configured to circulate the first fluid, and a liquid refrigerant distribution unit in thermal communication with the second evaporative section. The liquid refrigerant distribution unit is configured to circulate a second fluid to enable heat transfer from the first fluid to the second fluid.
Abstract:
A cooling assembly for cooling server racks includes a server rack enclosure sub-assembly that includes at least one panel member defining a volume for receiving one or more server racks having a front portion and a rear portion, at least one of the panel members is a rear panel member; at least one frame member defines an opening for receiving the rear portion of the server racks to form a hot space between the rear panel member and the combination of the frame member and the rear portion of the server racks; a cooling sub-assembly disposed in thermal communication with the hot space to cool at least one server supported in the server rack and including a chassis receiving at least one heat exchange member for exchanging heat between a refrigerant fluid flowing through the heat exchange member and fluid flowing through the hot space heated by the server.
Abstract:
Systems and methods relating to a plural in-series pumped liquid refrigerant trim evaporator cycle are described. The cooling systems include a first evaporator coil in thermal communication with an air intake flow to a heat load, and a first liquid refrigerant distribution unit in thermal communication with the first evaporator coil. The cooling systems further include a second evaporator coil disposed in series with the first evaporator coil in the air intake flow and in thermal communication with the air intake flow, and a second liquid refrigerant distribution unit in thermal communication with the second evaporator coil. A trim compression cycle of the second liquid refrigerant distribution unit is configured to further cool the air intake flow through the second evaporator coil when the temperature of the first fluid flowing out of the main compressor of the second liquid refrigerant distribution unit exceeds a predetermined threshold temperature.
Abstract:
The cooling systems and methods of the present disclosure relate to a plural in-series pumped liquid refrigerant trim evaporator cycle that may be incorporated into an existing cooling system to increase the efficiency of the existing cooling system. The cooling systems of the present disclosure include a first evaporator coil in thermal communication with an air intake flow to a heat load, such as a heat load being cooled by the existing cooling system, and a first liquid refrigerant distribution unit in thermal communication with the first evaporator coil. The cooling systems further includes a second evaporator coil disposed in series with the first evaporator coil in the air intake flow and in thermal communication with the air intake flow, and a second liquid refrigerant distribution unit in thermal communication with the second evaporator coil. A trim compression cycle of the second liquid refrigerant distribution unit is configured to incrementally further cool the air intake flow through the second evaporator coil when the temperature of the free-cooled first fluid flowing out of the main compressor of the second liquid refrigerant distribution unit exceeds a predetermined threshold temperature.
Abstract:
The cooling systems and methods of the present disclosure relate to cooling electronic equipment in data centers or any other applications that have high heat rejection temperature and high sensible heat ratio.