Abstract:
Apparatus, systems and methods for adaptively reducing blocking artifacts in block-coded video are disclosed. In one implementation, a system includes processing logic at least capable of deblock filtering at least a portion of a line of video data based, at least in part, on edge information and texture information to generate at least a portion of a line of deblocked video data, and an image data output device responsive to the processing logic.
Abstract:
Apparatus, systems and methods for adaptively reducing blocking artifacts in block-coded video are disclosed. In one implementation, a system includes processing logic at least capable of deblock filtering at least a portion of a line of video data based, at least in part, on edge information and texture information to generate at least a portion of a line of deblocked video data, and an image data output device responsive to the processing logic.
Abstract:
Techniques are disclosed to adaptively control an image sensor and image signal processor (ISP), collectively known as an image pipeline, such that a minimum amount of power is consumed by an electronic device while producing images that can be accurately analyzed by a computer vision application. The techniques disclosed herein can be implemented in various electronic devices capable of capturing and processing image data, such as, for example, smart phones, wearable computers, laptops, tablets, and other mobile computing or imaging systems. In an embodiment, the techniques disclosed herein are implemented in a system-on-chip device.
Abstract:
In some embodiments, color and contrast enhancement video processing may be done in one shot instead of adjusting one of color and contrast enhancement, then the other, and then going back to the first one to readjust because of the second adjustment. In some embodiments, global lightness adjustment, local contrast enhancement, and saturation enhancement may be done at the same time and in parallel. Lightness adjustment improves visibility of details for generally dark or generally light images without changing intended lighting conditions in the original shot, and is used to enhance the range of color/saturation enhancement. Local contrast enhancement done in parallel improves visual definition of objects and textures and thus local contrast and perceived sharpness.
Abstract:
Apparatus, systems and methods for adaptively reducing blocking artifacts in block-coded video are disclosed. In one implementation, a system includes processing logic at least capable of deblock filtering at least a portion of a line of video data based, at least in part, on edge information and texture information to generate at least a portion of a line of deblocked video data, and an image data output device responsive to the processing logic.
Abstract:
A processor computes a measure of input image structural complexity of an input image, and searches a database of true positives to find one or more entries in the database that represent true positive images that are structurally similar to the input image. The processor compares a measure of signal quality of the input image and a measure of signal quality of one of the true positive images, as retrieved from the database, and based on the comparison updates a control variable that configures a signal quality conditioning process that is to be performed on the input image prior to processing of the input image by a computer vision processor thus improving performance of the computer vision task. Other embodiments are also described and claimed.
Abstract:
Apparatus, systems and methods for adaptively reducing blocking artifacts in block-coded video are disclosed. In one implementation, a system includes processing logic at least capable of deblock filtering at least a portion of a line of video data based, at least in part, on edge information and texture information to generate at least a portion of a line of deblocked video data, and an image data output device responsive to the processing logic.
Abstract:
A processor computes a measure of input image structural complexity of an input image, and searches a database of true positives to find one or more entries in the database that represent true positive images that are structurally similar to the input image. The processor compares a measure of signal quality of the input image and a measure of signal quality of one of the true positive images, as retrieved from the database, and based on the comparison updates a control variable that configures a signal quality conditioning process that is to be performed on the input image prior to processing of the input image by a computer vision processor thus improving performance of the computer vision task. Other embodiments are also described and claimed.
Abstract:
In some embodiments, color and contrast enhancement video processing may be done in one shot instead of adjusting one of color and contrast enhancement, then the other, and then going back to the first one to readjust because of the second adjustment. In some embodiments, global lightness adjustment, local contrast enhancement, and saturation enhancement may be done at the same time and in parallel. Lightness adjustment improves visibility of details for generally dark or generally light images without changing intended lighting conditions in the original shot, and is used to enhance the range of color/saturation enhancement. Local contrast enhancement done in parallel improves visual definition of objects and textures and thus local contrast and perceived sharpness.
Abstract:
Apparatus, systems and methods for adaptively reducing blocking artifacts in block-coded video are disclosed. In one implementation, a system includes processing logic at least capable of deblock filtering at least a portion of a line of video data based, at least in part, on edge information and texture information to generate at least a portion of a line of deblocked video data, and an image data output device responsive to the processing logic.