Abstract:
Universal integrated circuit card (UICC) having a virtual subscriber identity module functionality is disclosed. A wireless transmit/receive unit (WTRU) comprises a mobile equipment (ME) configured to perform wireless communication and a UICC. The UICC is configured to perform security functionalities. The UICC supports multiple isolated domains including UICC issuer's domain. Each domain is owned by a separate owner so that each owner stores and executes an application on the UICC under a control of an UICC issuer and the UICC issuer's domain controls creation and deletion of other domains and defines and enforces security rules for authorizing third parties to have an access to the domains. The UICC is configured to verify integrity of operating system functions and applications stored on the UICC. The UICC is configured to control an access to information regarding applications according to security policies stored within the UICC.
Abstract:
Systems, methods, and apparatus are provided for generating verification data that may be used for validation of a wireless transmit-receive unit (WTRU). The verification data may be generated using a tree structure having protected registers, represented as root nodes, and component measurements, represented as leaf nodes. The verification data may be used to validate the WTRU. The validation may be performed using split-validation, which is a form of validation described that distributes validation tasks between two or more network entities. Subtree certification is also described, wherein a subtree of the tree structure may be certified by a third party.
Abstract:
Systems, methods, and apparatus are provided for generating verification data that may be used for validation of a wireless transmit-receive unit (WTRU). The verification data may be generated using a tree structure having protected registers, represented as root nodes, and component measurements, represented as leaf nodes. The verification data may be used to validate the WTRU. The validation may be performed using split-validation, which is a form of validation described that distributes validation tasks between two or more network entities. Subtree certification is also described, wherein a subtree of the tree structure may be certified by a third party.
Abstract:
Wireless telecommunications networks may implement various forms of authentication. There are a variety of different user and device authentication protocols that follow a similar network architecture, involving various network entities such as a user equipment (UE), a service provider (SP), and an authentication endpoint (AEP). To select an acceptable authentication protocol or credential for authenticating a user or UE, authentication protocol negotiations may take place between various network entities. For example, negotiations may take place in networks implementing a single-sign on (SSO) architecture and/or networks implementing a Generic Bootstrapping Architecture (GBA).
Abstract:
Methods and instrumentalities are disclosed that enable one or more domains on one or more devices to be owned or controlled by one or more different local or remote owners, while providing a level of system-wide management of those domains. Each domain may have a different owner, and each owner may specify policies for operation of its domain and for operation of its domain in relation to the platform on which the domain resides, and other domains. A system-wide domain manager may be resident on one of the domains. The system-wide domain manager may enforce the policies of the domain on which it is resident, and it may coordinate the enforcement of the other domains by their respective policies in relation to the domain in which the system-wide domain manager resides. Additionally, the system-wide domain manager may coordinate interaction among the other domains in accordance with their respective policies. A domain application may be resident on one of the domains. The domain application may be ported to the platform based on a relationship between at least one domain owner and at least one other domain owner of the one or more domains.
Abstract:
A method and apparatus to establish a trustworthy local time based on trusted computing methods are described. The concepts are scaling because they may be graded by the frequency and accuracy with which a reliable external time source is available for correction and/or reset, and how trustworthy this external source is in a commercial scenario. The techniques also take into account that the number of different paths and number of hops between the device and the trusted external time source may vary. A local clock related value which is protected by a TPM securely bound to an external clock. A system of Accuracy Statements (AS) is added to introduce time references to the audit data provided by other maybe cheaper sources than the time source providing the initial time.
Abstract:
A method and apparatus for performing secure Machine-to-Machine (M2M) provisioning and communication is disclosed. In particular a temporary private identifier, or provisional connectivity identification (PCID), for uniquely identifying machine-to-machine equipment (M2ME) is also disclosed. Additionally, methods and apparatus for use in validating, authenticating and provisioning a M2ME is also disclosed. The validation procedures disclosed include an autonomous, semi-autonomous, and remote validation are disclosed. The provisioning procedures include methods for re-provisioning the M2ME. Procedures for updating software, and detecting tampering with the M2ME are also disclosed.
Abstract:
Secure communications may be established amongst network entities for performing authentication and/or verification of the network entities. For example, a user equipment (UE) may establish a secure channel with an identity provider, capable of issuing user identities for authentication of the user/UE. The UE may also establish a secure channel with a service provider, capable of providing services to the UE via a network. The identity provider may even establish a secure channel with the service provider for performing secure communications. The establishment of each of these secure channels may enable each network entity to authenticate to the other network entities. The secure channels may also enable the UE to verify that the service provider with which it has established the secure channel is an intended service provider for accessing services.
Abstract:
Methods, components and apparatus for implementing platform validation and management (PVM) are disclosed. PVM provides the functionality and operations of a platform validation entity with remote management of devices by device management components and systems such as a home node-B management system or component. Example PVM operations bring devices into a secure target state before allowing connectivity and access to a core network.
Abstract:
A wireless communications device may be configured to perform integrity checking and interrogation with a network entity to isolate a portion of a failed component on the wireless network device for remediation. Once an integrity failure is determined on a component of the device, the device may identify a functionality associated with the component and indicate the failed functionality to the network entity. Both the wireless network device and the network entity may identify the failed functionality and/or failed component using a component-to-functionality map. After receiving an indication of an integrity failure at the device, the network entity may determine that one or more additional iterations of integrity checking may be performed at the device to narrow the scope of the integrity failure on the failed component. Once the integrity failure is isolated, the network entity may remediate a portion of the failed component on the wireless communications device.