摘要:
An authentication channel is established between a mobile device and a transaction terminal that uses a keypad for access control. The terminal keypad is assumed to be untrusted, whereas the mobile device has a trusted interface that only the device user can access and use. The transaction terminal includes a short-range communication device, and a keypad interface application configured to communicate with an external keypad device in lieu of the transaction terminal's own keypad. The mobile device includes a mobile app. In response to detecting a user access request, a handshake protocol is performed between the keypad interface application in the transaction terminal and the keypad interface function in the mobile device. If the handshake protocol succeeds, the user is notified that the transaction terminal is trusted. The user then enters his or her password and/or PIN on the mobile device in lieu of direct entry via the terminal keypad.
摘要:
An un-authenticated user attempts to access a protected resource at a Web- or cloud-based application from within a rich client. The client has an associated local HTTP server. Upon being refused access, a browser-based login dialog is opened automatically within an embedded browser panel. After receipt of the user's login credential in the panel, the browser passes the credential server application. If the user is authenticated, the browser-based dialog receives a cookie establishing that the user is authenticated for a session. The browser then automatically makes a request to the HTTP server, passing the cookie. Upon receipt of the request at the rich client HTTP server, the rich client saves the cookie in an associated data store, shuts down the login dialog, and re-issues the original request to the server, this time passing the cookie. The rich client, having provided the cookie, is then permitted to access the resource.
摘要:
An approach is provided to increase password strength in a group of users. The approach detects a password event corresponding to one of the users. In response to the detected password event, the approach identifies a strength of the user's password and compares it to one or more password strength metrics that correspond to the group of users. The password strength comparison data is then transmitted as feedback back to the user.
摘要:
Denial-of-service attacks are prevented or mitigated in a cloud compute environment, such as a multi-tenant, collaborative SaaS system. This is achieved by providing a mechanism by which characterization of “legitimate” behavior is defined for tenant applications or application classes, preferably along with actions to be taken in the event a request to execute an application is anticipated to exceed defined workflow limits. A set of application profiles are generated. Typically, a profile comprises information, such as a request defined by one or more request variables, one or more “constraints,” one or more “request mappings,” and one or more “actions.” A constraint is a maximum permitted workload for the application. A request mapping maps a request variable to the constraint, either directly or indirectly. The profile information defines how a request is mapped to a workload to determine whether the request is in policy or, if not, what action to take.
摘要:
In a cloud computing environment, a user authenticates to multiple cloud services concurrently. A master service has knowledge of or tracks the cloud service(s) to which a user is authenticated. Each cloud service may enforce its own inactivity period, and the inactivity period of at least first and second cloud services may be distinct from one another. When the master service receives an indication that the authenticated user is attempting to take an action at a first cloud service despite an activity timeout there, the master service issues a status request to at least the second cloud service to determine whether the user is still active at the second cloud service (despite its different inactivity period). If the user is still active at the second cloud service, the master service provides a response, selectively overriding (re-setting) the activity timeout at the first cloud service to permit the action.
摘要:
An un-authenticated user attempts to access a protected resource at a Web- or cloud-based application from within a rich client. The client has an associated local HTTP server. Upon being refused access, a browser-based login dialog is opened automatically within an embedded browser panel. After receipt of the user's login credential in the panel, the browser passes the credential server application. If the user is authenticated, the browser-based dialog receives a cookie establishing that the user is authenticated for a session. The browser then automatically makes a request to the HTTP server, passing the cookie. Upon receipt of the request at the rich client HTTP server, the rich client saves the cookie in an associated data store, shuts down the login dialog, and re-issues the original request to the server, this time passing the cookie. The rich client, having provided the cookie, is then permitted to access the resource.
摘要:
A method, programmed medium and system are provided for a server-based security manager application to support a self-cleaning operation on a remote computerized device. When a computer device has been reported as being missing for example, the security manager server application will cause the device to take pro-determined actions such as un-installing predetermined applications contained on the device and removing all persisted data associated with such predetermined applications.
摘要:
Denial-of-service attacks are prevented or mitigated in a cloud compute environment, such as a multi-tenant, collaborative SaaS system. This is achieved by providing a mechanism by which characterization of “legitimate” behavior is defined for tenant applications or application classes, preferably along with actions to be taken in the event a request to execute an application is anticipated to exceed defined workflow limits. A set of application profiles are generated. Typically, a profile comprises information, such as a request defined by one or more request variables, one or more “constraints,” one or more “request mappings,” and one or more “actions.” A constraint is a maximum permitted workload for the application. A request mapping maps a request variable to the constraint, either directly or indirectly. The profile information defines how a request is mapped to a workload to determine whether the request is in policy or, if not, what action to take.
摘要:
An authentication channel is established between a mobile device and a transaction terminal that uses a keypad for access control. The terminal keypad is assumed to be untrusted, whereas the mobile device has a trusted interface that only the device user can access and use. The transaction terminal includes a short-range communication device, and a keypad interface application configured to communicate with an external keypad device in lieu of the transaction terminal's own keypad. The mobile device includes a mobile app. In response to detecting a user access request, a handshake protocol is performed between the keypad interface application in the transaction terminal and the keypad interface function in the mobile device. If the handshake protocol succeeds, the user is notified that the transaction terminal is trusted. The user then enters his or her password and/or PIN on the mobile device in lieu of direct entry via the terminal keypad.
摘要:
An authentication channel is established between a mobile device and a transaction terminal that uses a keypad for access control. The terminal keypad is assumed to be untrusted, whereas the mobile device has a trusted interface that only the device user can access and use. The transaction terminal includes a short-range communication device, and a keypad interface application configured to communicate with an external keypad device in lieu of the transaction terminal's own keypad. The mobile device includes a mobile app. In response to detecting a user access request, a handshake protocol is performed between the keypad interface application in the transaction terminal and the keypad interface function in the mobile device. If the handshake protocol succeeds, the user is notified that the transaction terminal is trusted. The user then enters his or her password and/or PIN on the mobile device in lieu of direct entry via the terminal keypad.