摘要:
There is provided a metal oxide having a continuous nano-fiber network structure as a negative active material for a secondary battery. A method for fabricating such negative active material for a secondary battery comprises spinning a mixed solution of a metal oxide precursor and a polymer onto a collector to form composite fibers mixed with the metal oxide precursor and the polymer, thermally compressing or thermally pressurizing the composite fibers, and thermally treating the thermally compressed or thermally pressurized composite fibers to remove the polymer from the composite fiber.
摘要:
Disclosed are to provide a modified carbon nanotube obtained by reacting a polymer to a carbon nanotube by a radical graft method, capable of minimizing lowering of a physical property of a carbon nanotube caused when being modified, and capable of enhancing dispersibility of the carbon nanotube and an adhesion strength between carbon nanotubes, the polymer having a molecular weight controlled by a living radical polymerization and still having a living radical end group.Also disclosed are to provide a carbon nanotube electrode and a dye-sensitized solar cell using the same, capable of forming a carbon nanotube film having a thickness thinner than that of the conventional electrode by directly spraying, on a substrate, by an electro-spray process, a uniform dispersion solution that the modified carbon nanotube is dispersed in a proper solvent without requiring an additional organic binder, capable of exhibiting an excellent catalytic characteristic owing to a close adhesion strength between carbon nanotubes and an increased relative density of the carbon nanotube film, and capable of implementing an excellent long-term stability owing to a strong bonding force between a carbon nanotube and a substrate.
摘要:
A dye-sensitized solar cell having improved photoelectric conversion characteristic includes a metal oxide layer having dye-adsorbed metal oxide nanoparticles, wherein the metal oxide nanoparticles are formed by electrospinning a mixed solution of a metal oxide precursor and a polymer into ultrafine composite fibers, and thermally compressing and sintering the ultrafine composite fibers.