摘要:
A reflective display device using photonic crystals includes a plurality of reflective color filters, each reflective color filter reflects a predetermined wavelength range of an incident visible light; and a plurality of optical switches disposed adjacent to and facing a corresponding one of the plurality of reflective color filters, each of the plurality of optical switches extracts a predetermined color by adjusting an intensity or on/off-frequency of light reflected from the corresponding one of the plurality of reflective color filters. Accordingly, a reflective display device using photonic crystals may have a simplified structure requiring no conventional reflecting mirror.
摘要:
A 2×2 optical switching apparatus using photonic crystal structures has a compact, simple structure and includes an optical-guide module having first, second, third and fourth waveguides, the first and second waveguides guiding a first optical signal of a first input port to a first and a second output port, respectively, the third and fourth waveguides guiding a second optical signal of a second input port to the second and the first output ports, respectively, and formed with photonic crystals having a complete photonic bandgap for a wavelength range of the first and second optical signals, and a switching control section controlling the first and second optical signals to be respectively guided through either a first/third waveguide route or a second/fourth waveguide route according to a route-selecting-control signal inputted from outside. The 2×2 optical switching apparatus has no mechanical motion, little polarization dependence and may be efficiently used in optical networks.
摘要:
A polarization mode dispersion compensation apparatus using a photonic crystal structure includes an optical signal splitter for splitting and outputting incident optical signals into optical signals of a first and second polarization state; an optical signal combiner for combining and outputting the optical signals of the first and second polarization states; an optical signal guide having a photonic crystal structure having a first waveguide and a longer and variable second waveguide; a signal tab for externally outputting a portion of the optical signals and for outputting a portion of the optical signals to a feedback unit; a feedback unit for measuring a dispersion degree of the first and second polarization states inputted from the signal tab, and for outputting a feedback signal for removing the polarization mode dispersion; and an effective optical path length variation unit for varying an effective optical path length of the second waveguide.
摘要:
A reflective display device using photonic crystals includes a plurality of reflective color filters, each reflective color filter reflects a predetermined wavelength range of an incident visible light; and a plurality of optical switches disposed adjacent to and facing a corresponding one of the plurality of reflective color filters, each of the plurality of optical switches extracts a predetermined color by adjusting an intensity or on/off-frequency of light reflected from the corresponding one of the plurality of reflective color filters. Accordingly, a reflective display device using photonic crystals may have a simplified structure requiring no conventional reflecting mirror.
摘要:
A reflective display device using photonic crystals includes a plurality of reflective color filters, each reflective color filter reflects a predetermined wavelength range of an incident visible light; and a plurality of optical switches disposed adjacent to and facing a corresponding one of the plurality of reflective color filters, each of the plurality of optical switches extracts a predetermined color by adjusting an intensity or on/off-frequency of light reflected from the corresponding one of the plurality of reflective color filters. Accordingly, a reflective display device using photonic crystals may have a simplified structure requiring no conventional reflecting mirror.
摘要:
A light regulating device and photonic crystal display device utilizing bandgap controls including a photonic crystal including a material that is capable of varying its refractive index in accordance with an electric field, the photonic crystal having a photonic bandgap in a specific frequency range; and an upper transparent electrode and a lower transparent electrode arranged on an upper side and a lower side of the photonic crystal, respectively, to which a voltage is applied, wherein a size of the photonic bandgap of the photonic crystal is controlled by the voltage applied between the upper transparent electrode and the lower transparent electrode. With the present invention, a reflection-type or penetration-type display is available which has a simple pixel structure, a high light efficiency, and a high color contrast ratio, the display using high reflection factors depending on color ranges of a photonic crystal.
摘要:
A phase-conjugate holographic data storage device capable of enhancing the characteristics of recording and reproducing data by using a focusing lens is provided. The holographic data storage device includes a focusing lens which focuses an object beam having data, a spatial light modulator which is located on the optical path of the object beam passing through the focusing lens and modulates the object beam, and a data recording medium which records an interference pattern generated by interference between a reference beam and the object beam passing through the spatial light modulator and converging into a focus. The focusing lens is a focusing lens having at least two different focuses. The holographic data storage device is capable of effectively reducing a dc term having a bad influence on the characteristics of recording data, minimizing the size of a data unit, that is, a spot, and thus enhancing the density of recording data.
摘要:
A photonic crystal-based resonant cavity includes a first dielectric substance having a first dielectric permittivity, a plurality of second dielectric substances having a second dielectric permittivity and arranged in a first periodic structure with respect to at least one or more directions on a plane formed of the first dielectric substance, a plurality of third dielectric substances having a third dielectric permittivity and arranged in a second periodic structure with respect to at least one or more directions on the plane formed of the first dielectric substance, and disposed in unit cells formed by the plurality of second dielectric substances so as to be arranged in a third periodic structure together with the plurality of second dielectric substances, and one or more local defects formed to disrupt either the first periodic structure formed by the second dielectric substances or the second periodic structure formed by the third dielectric substances.
摘要:
A photonic band-gap optical fiber is disclosed. The photonic band-gap optical fiber includes a photonic crystal having plural band-gaps. The photonic crystal includes a first medium having a first permittivity; plural second media having a second permittivity, and formed in a first periodic arrangement with respect to at least one or more directions on a plane formed of the first medium; and plural third media having a third permittivity, formed in a second periodic arrangement with respect to at least one or more directions on the plane formed of the first medium, and formed in a third periodic arrangement with respect to at least one or more directions together with the plural second media. The photonic crystal has a hollow portion for propagating light passing through the plane formed of the first medium. The photonic band-gap optical fiber can be used to propagate light of plural, different bands at the same time.
摘要:
A photonic band-gap optical fiber is disclosed. The photonic band-gap optical fiber includes a photonic crystal having plural band-gaps. The photonic crystal includes a first medium having a first permittivity; plural second media having a second permittivity, and formed in a first periodic arrangement with respect to at least one or more directions on a plane formed of the first medium; and plural third media having a third permittivity, formed in a second periodic arrangement with respect to at least one or more directions on the plane formed of the first medium, and formed in a third periodic arrangement with respect to at least one or more directions together with the plural second media. The photonic crystal has a hollow portion for propagating light passing through the plane formed of the first medium. The photonic band-gap optical fiber can be used to propagate light of plural, different bands at the same time.