Abstract:
A lens power measuring system has a light source and a fiber-optic light delivery system optically coupled to the light source to receive illumination light from the light source. The fiber-optic light delivery system has a transmit/receive end. The lens power measurement system also has a microscope objective optically coupled to the fiber-optic light delivery system through the transmit/receive end of the fiber-optic light delivery system, a movable mirror arranged to intercept at least a portion of light after having passed through the microscope objective, and an optical detection system optically coupled to the fiber-optic light delivery system to receive light after having been reflected from said movable mirror. The optical detection system is constructed to be able to determine a substantially maximum signal of light reflected from the movable mirror in correspondence with a relative position of the movable mirror to a lens to be measured. Methods of measurement include methods using such a lens system.
Abstract:
A lens power measuring system has a light source and a fiber-optic light delivery system optically coupled to the light source to receive illumination light from the light source. The fiber-optic light delivery system has a transmit/receive end. The lens power measurement system also has a microscope objective optically coupled to the fiber-optic light delivery system through the transmit/receive end of the fiber-optic light delivery system, a movable mirror arranged to intercept at least a portion of light after having passed through the microscope objective, and an optical detection system optically coupled to the fiber-optic light delivery system to receive light after having been reflected from said movable mirror. The optical detection system is constructed to be able to determine a substantially maximum signal of light reflected from the movable mirror in correspondence with a relative position of the movable mirror to a lens to be measured. Methods of measurement include methods using such a lens system.
Abstract:
An illumination system for a particle image velocimetry system has an illumination source, a hollow tapered optical funnel arranged to receive illumination light from the illumination source, a hollow optical waveguide optically coupled to an output end of the hollow tapered optical funnel, and a beam shaping optical system optically coupled to an output end of the hollow optical waveguide. The illumination system is constructed to provide a light sheet to illuminate particles within a fluid under observation. A particle image velocimetry system has such an illumination system.
Abstract:
A method of treating spinal cord injury (SCI) includes transcutaneously irradiating at least a portion of a spinal environment of the patient with light having a power density of at least about 0.01 mW/cm2 at the portion of the spinal environment.
Abstract translation:一种治疗脊髓损伤(SCI)的方法包括使用功率密度为至少约0.01mW / cm 2的功率密度的光在患者的脊髓环境的至少一部分经皮照射 脊椎环境。
Abstract:
The present invention relates generally to the treatment of SCI by stimulating axon regeneration within the central nerve system. One aspect of the present invention provides methods of treating SCI with low power laser irradiation (LPLI). Another aspect of the present invention provides methods of treating SCI by modulating a gene activity to stimulate axon regeneration. In this regard, the present invention also provides compositions that modulate genes expression relating to the neuron-regeneration after SCI. Another aspect of the present invention provides methods for evaluating the effectiveness of a treatment for SCI.