Abstract:
In various embodiments, the present disclosure provides a wall panel blocking bracket including a first base, a first stud side engager connected to and extending upwardly from the first base, a second stud side engager connected to and extending upwardly from the first base, a second base connected to the first stud side engager, a third base connected to the second stud side engager, a first hook extending transversely from the first stud side engager, a second hook extending transversely from the second stud side engager, all configured to partially support a wooden block adjacent to a support beam in any one of a perpendicular orientation, a first position parallel orientation, and a second different position parallel orientation.
Abstract:
A fastener-driving tool is provided and includes a housing and a workpiece-contacting element movably connected to the housing, where the workpiece-contacting element is movable between a rest position and an activated position. A trigger is movably connected to the housing such that the trigger is movable between a rest position and an activated position. The tool further includes an actuation lever movably connected to the trigger and movable between a rest position and an activated position. A damper mechanism is associated with the actuation lever and is configured to control a rate of movement of the actuation lever between the activated position and the rest position.
Abstract:
Various embodiments of the present disclosure provide a powered-fastener-driving tool including driver blade that has a varying cross-section.
Abstract:
Various embodiments of the present disclosure provide a powered-fastener-driving tool including driver blade that has a varying cross-section.
Abstract:
A fastener-driving tool is provided and includes a housing and a workpiece-contacting element movably connected to the housing, where the workpiece-contacting element is movable between a rest position and an activated position. A trigger is movably connected to the housing such that the trigger is movable between a rest position and an activated position. The tool further includes an actuation lever movably connected to the trigger and movable between a rest position and an activated position. A damper mechanism is associated with the actuation lever and is configured to control a rate of movement of the actuation lever between the activated position and the rest position.
Abstract:
A fastener-driving tool is provided and includes a housing and a workpiece-contacting element movably connected to the housing, where the workpiece-contacting element is movable between a rest position and an activated position. A trigger is movably connected to the housing such that the trigger is movable between a rest position and an activated position. The tool further includes an actuation lever movably connected to the trigger and movable between a rest position and an activated position. A damper mechanism is associated with the actuation lever and is configured to control a rate of movement of the actuation lever between the activated position and the rest position.
Abstract:
A fastener-driving tool is provided and includes a housing and a workpiece-contacting element movably connected to the housing, where the workpiece-contacting element is movable between a rest position and an activated position. A trigger is movably connected to the housing such that the trigger is movable between a rest position and an activated position. The tool further includes an actuation lever movably connected to the trigger and movable between a rest position and an activated position. A damper mechanism is associated with the actuation lever and is configured to control a rate of movement of the actuation lever between the activated position and the rest position.
Abstract:
Various embodiments of the present disclosure provide a combustion-powered fastener-driving tool including an engaging element that improves tool performance by frictionally engaging a piston upon its return to a pre-firing position, thereby reducing the likelihood that the piston will end up at a position other than the pre-firing position after completion of a fastener-driving cycle. In one embodiment, the fastener-driving tool comprises a cylinder, a driving assembly slidably disposed within the cylinder and movable from a pre-firing position to a firing position to drive a fastener into a workpiece, and an engaging element. The driving assembly includes an outwardly tapered engaging element contact surface, and the engaging element is positioned to engage the engaging element contact surface when the driving assembly is in the pre-firing position.
Abstract:
A fastener-driving tool is provided and includes a housing and a workpiece-contacting element movably connected to the housing, where the workpiece-contacting element is movable between a rest position and an activated position. A trigger is movably connected to the housing such that the trigger is movable between a rest position and an activated position. The tool further includes an actuation lever movably connected to the trigger and movable between a rest position and an activated position. A damper mechanism is associated with the actuation lever and is configured to control a rate of movement of the actuation lever between the activated position and the rest position.
Abstract:
Various embodiments of the present disclosure provide a combustion-powered fastener-driving tool including an engaging element that improves tool performance by frictionally engaging a piston upon its return to a pre-firing position, thereby reducing the likelihood that the piston will end up at a position other than the pre-firing position after completion of a fastener-driving cycle. In one embodiment, the fastener-driving tool comprises a cylinder, a driving assembly slidably disposed within the cylinder and movable from a pre-firing position to a firing position to drive a fastener into a workpiece, and an engaging element. The driving assembly includes an outwardly tapered engaging element contact surface, and the engaging element is positioned to engage the engaging element contact surface when the driving assembly is in the pre-firing position.