Abstract:
A communication system which has a plurality of mobile terminals and a base station, each of the mobile terminals and/or base station comprising a medium access control sub-layer, upper layers of the medium access control sub-layer, and a lower layer of the medium access control sub-layer, wherein the medium access control sub-layer is configured to perform self-basic functions in response to basic function execution requests or functions associated with the upper layers or lower layer in response to requests therefrom. According to the present invention, the communication system can provide a compatible multimedia communication service even if an originating terminal and a terminating terminal employ different communication manners, they are available from different manufacturers or they are operated by different communication service operators.
Abstract:
A method for branching data in a mobile communication terminal to perform data communication between a mobile station and a network which have media access control sublayers. In a data sending mode, each of the media access control sublayers of the mobile station and network attaches logical channel types based on traffic characteristic information and a radio bearer status to a media access control header contained in data to be sent. Then, each of the media access control sublayers branches the data to be sent, to transport channels corresponding to the attached logical channel types. In a data receiving mode, each of the media access control sublayers determines logical channels corresponding to logical channel types of a media access control header contained in received data. Then, each of the media access control sublayers branches the received data to the determined logical channels. Each of the media access control sublayers performs mapping and multiplexing/demultiplexing between logical channels and transport channels according to traffic characteristics to branch data. Therefore, it is possible to efficiently provide various multimedia and packet services.
Abstract:
A method for formatting a signal in a mobile communication system by appending a plurality of medium access control headers to a plurality of medium access control-service data units for data transfer between a mobile station and network in the mobile communication system. If the service data units have the same characteristics, a medium access control-protocol data unit is formed by successively coupling the service data units to any one of the medium access control headers. If the service data units have different characteristics, the protocol data unit is formed by sequentially coupling each of the service data units and each of the medium access control headers. The formed protocol data unit is then transformed into a transport block with a predetermined size. A medium access control sublayer formats medium access control-protocol data units according to transport channel characteristics in peer-to-peer communication in such a manner that the protocol data units can have different formats with respect to different transport channels. This makes it possible to provide more efficient functions.
Abstract:
Radio protocol for a next generation mobile communication system is disclosed including a radio link control layer for connecting to an upper layer through a service access point provided in advance and for connecting to a lower layer through a plurality of logic channels provided in advance. The radio link control layer includes at least one radio link control entity for transmission/reception of data to/from up-link or down-link according to a form of a data transmission mode.
Abstract:
Radio protocol for a next generation mobile communication system is disclosed including a radio link control layer for connecting to an upper layer through a service access point provided in advance and for connecting to a lower layer through a plurality of logic channels provided in advance. The radio link control layer includes at least one radio link control entity for transmission/reception of data to/from up-link or down-link according to a form of a data transmission mode.
Abstract:
Radio protocol for a next generation mobile communication system is disclosed including a radio link control layer for connecting to an upper layer through a service access point provided in advance and for connecting to a lower layer through a plurality of logic channels provided in advance The radio link control layer includes at least one radio link control entity for transmission/reception of data to/from up-link or down-link according to a form of a data transmission mode.
Abstract:
A method for formatting a signal in a mobile communication system by appending a plurality of medium access control headers to a plurality of medium access control-service data units for data transfer between a mobile station and network in the mobile communication system. If the service data units have the same characteristics, a medium access control-protocol data unit is formed by successively coupling the service data units to any one of the medium access control headers. If the service data units have different characteristics, the protocol data unit is formed by sequentially coupling each of the service data units and each of the medium access control headers. The formed protocol data unit is then transformed into a transport block with a predetermined size. A medium access control sublayer formats medium access control-protocol data units according to transport channel characteristics in peer-to-peer communication in such a manner that the protocol data units can have different formats with respect to different transport channels. This makes it possible to provide more efficient functions.
Abstract:
A method for formatting a signal in a mobile communication system by appending a plurality of medium access control headers to a plurality of medium access control-service data units for data transfer between a mobile station and network in the mobile communication system. If the service data units have the same characteristics, a medium access control-protocol data unit is formed by successively coupling the service data units to any one of the medium access control headers. If the service data units have different characteristics, the protocol data unit is formed by sequentially coupling each of the service data units and each of the medium access control headers. The formed protocol data unit is then transformed into a transport block with a predetermined size. A medium access control sublayer formats medium access control-protocol data units according to transport channel characteristics in peer-to-peer communication in such a manner that the protocol data units can have different formats with respect to different transport channels. This makes it possible to provide more efficient functions.
Abstract:
Disclosed are a MIMO communication system and a method of controlling the same. The MIMO communication system includes an MCS (modulation and coding scheme) level selector for selecting an MCS level representing combination of data modulation and coding schemes according to a channel status, a modulation and coding section for processing transmit data according to modulation and coding schemes corresponding to the selected MCS level, a D-STTD (double-space time transmit diversity) encoder for coding the transmit data, which has been processed through the modulation and coding section, through a D-STTD scheme and transmitting the transmit data through M transmit antennas, and a receiver for receiving data, which have been coded through the D-STTD scheme, through N receive antennas, detecting the received data through an OSIC-MMSE (ordered successive interference cancellation-minimum mean-square error) scheme, and decoding the received data through the modulation and coding schemes employed in the modulation and coding section.
Abstract:
A communication system which has a plurality of mobile terminals and a base station, each of the mobile terminals and/or base station comprising a medium access control sub-layer, upper layers of the medium access control sub-layer, and a lower layer of the medium access control sub-layer, wherein the medium access control sub-layer is configured to perform self-basic functions in response to basic function execution requests or functions associated with the upper layers or lower layer in response to requests therefrom. According to the present invention, the communication system can provide a compatible multimedia communication service even if an originating terminal and a terminating terminal employ different communication manners, they are available from different manufacturers or they are operated by different communication service operators.