Abstract:
A visual error calibration method configured to calibrate visual positioning errors of a laser processing apparatus is provided. The method includes: providing an alignment mark having at least one alignment point; locating a preset point of the alignment mark at a first preset position of a working area, and locating a preset image point at a preset position of the visible area; locating the alignment point at one of the second preset positions in the working area; adjusting parameters of a scanning module to locate an alignment image point at the preset position; relatively moving the alignment image point to positions of the visible area in sequence; recording the positions of the alignment image point in the visible area, the positions of the alignment point in the working area and the parameters of the scanning module, so as to produce an alignment table.
Abstract:
A visual error calibration method configured to calibrate visual positioning errors of a laser processing apparatus is provided. The method includes: providing an alignment mark having at least one alignment point; locating a preset point of the alignment mark at a first preset position of a working area, and locating a preset image point at a preset position of the visible area; locating the alignment point at one of the second preset positions in the working area; adjusting parameters of a scanning module to locate an alignment image point at the preset position; relatively moving the alignment image point to positions of the visible area in sequence; recording the positions of the alignment image point in the visible area, the positions of the alignment point in the working area and the parameters of the scanning module, so as to produce an alignment table.
Abstract:
A three-dimension laser processing apparatus including a laser source, a zoom lens set, a scanning mirror module, a visual module unit and a control unit is provided. The laser source provides a laser beam. The zoom lens set and the scanning mirror module are both located on the transmitting path of the laser beam. The visual module unit has a visible area. The control unit is electrically connected with and adjusts the zoom lens set and the scanning mirror module to make the laser beam focused on a plurality of reference surfaces in a three-dimension working space and make a plurality of positions of an image in the three-dimension working space focused on a center of the visible area correspondingly through the zoom lens set and an image lens set of the visual module unit. Besides, a positioning error correction method is provided.