Abstract:
In one example, a method includes determining, by a device, a plurality of voltage values that each correspond to a respective voltage drop across a remote p-n junction while the remote p-n junction is biased at different respective current levels, wherein each of the plurality of voltage values is a function of at least: one of the different respective current levels, a temperature of the remote p-n junction, and a series resistance between the device and the remote p-n junction. In this example, the method also includes, determining, by the device, an intermediate value based on a difference between at least three voltage values of the plurality of voltage values, wherein the intermediate value is not a function of the series resistance, and determining the temperature of the remote p-n junction based on the intermediate value such that the temperature is not a function of the series resistance.
Abstract:
In one embodiment, a method includes receiving power at a power consumer device coupled to a power provider device by a cable. The received power is supplied at a first current at an input of the power consumer device and is supplied to a load in the power consumer device. The method includes measuring a rate of change of the voltage at the input of the power consumer device, and determining whether the rate of change of the voltage at the input of the power consumer device is less than a first target rate of change of voltage. The current received at the input of the power consumer device is reduced to a second current lower than the first current if the rate of change of the voltage at the input of the power consumer device is greater than the first target rate of change of voltage.
Abstract:
A device is described that determines a session key for generating a message authentication code (MAC) tag associated with a communication session between the device and a second device. The device determines, based at least in part on the session key, a crypto key for encoding or decoding a message associated with the second device. The device then encodes or decodes the message based on the crypto key.
Abstract:
Representative implementations of devices and techniques provide detection of a voltage drift of an electrical component or system. A detection circuit detects the voltage drift based on a comparison of a received signal from a test circuit and a reference voltage. A compensation voltage may be generated and applied at one or more locations within the test circuit to compensate for the voltage drift.
Abstract:
Methods for securing and activating chips and/or devices that can utilize a hardware security module (HSM). One or more of the methods can include generating one or more digital certificates based on an identification (ID) associated with a device, generating one or more activation certificates and one or more modified activation certificate based on one or more encryption keys, and generating one or more chip data certificates and/or one or more modified chip data certificates.
Abstract:
Embodiments relate to systems and methods for authenticating devices and securing data. In embodiments, a session key for securing data between two devices can be derived as a byproduct of a challenge-response protocol for authenticating one or both of the devices.
Abstract:
An example method includes outputting, by a device, a first current through a temperature sensor that is that is external to the device; determining, by the device and based on a voltage drop across the temperature sensor while the first current is flowing through the temperature sensor, a current level; outputting, by the device, a second current at the determined current level through the temperature sensor; determining, by an analog-to-digital converter (ADC) of the device, a value that corresponds to a voltage drop across the temperature sensor while the second current is flowing through the temperature sensor; outputting, by the device, a third current through a reference resistor that is external to the device; and determining, based on the value and a voltage drop across the reference resistor while the third current is flowing through the reference resistor, a temperature of the temperature sensor.
Abstract:
Methods for securing and activating chips and/or devices that can utilize a hardware security module (HSM). One or more of the methods can include generating one or more digital certificates based on an identification (ID) associated with a device, generating one or more activation certificates and one or more modified activation certificate based on one or more encryption keys, and generating one or more chip data certificates and/or one or more modified chip data certificates.
Abstract:
Embodiments relate to systems and methods for authenticating devices and securing data. In embodiments, a session key for securing data between two devices can be derived as a byproduct of a challenge-response protocol for authenticating one or both of the devices.
Abstract:
An example method includes outputting, by a device, a first current through a temperature sensor that is that is external to the device; determining, by the device and based on a voltage drop across the temperature sensor while the first current is flowing through the temperature sensor, a current level; outputting, by the device, a second current at the determined current level through the temperature sensor; determining, by an analog-to-digital converter (ADC) of the device, a value that corresponds to a voltage drop across the temperature sensor while the second current is flowing through the temperature sensor; outputting, by the device, a third current through a reference resistor that is external to the device; and determining, based on the value and a voltage drop across the reference resistor while the third current is flowing through the reference resistor, a temperature of the temperature sensor.