摘要:
A gas recognition method based on a compressive sensing theory. The method comprises: collecting compressed data in an under-sampling manner; performing a reconstruction on the collected compressed data to obtain reconstructed data; training a back-propagation neural network by using the reconstructed data and storing the trained back-propagation neural network; inputting data under test into the trained back-propagation neural network, such that the trained back-propagation neural network performs a recognition on the data under test to realize qualitative recognition of gas. The method solves the problem in transmission and storage of large amount of data and the problem of imprecise recognition in current gas detection, and achieves the object that a precise qualitative recognition is achieved by using a reduced amount of data.
摘要:
A sampler adapted to a one-dimension slow-varying signal, including: a signal preprocessing unit configured to preprocess an input signal; a slope-controllable sawtooth wave signal generating unit configured to generate a slope-controllable sawtooth wave signal and perform zero-resetting; a signal comparing unit configured to compare the preprocessed input signal from the signal preprocessing unit with the sawtooth wave signal and to output a pulse signal to the generating unit and a signal outputting unit when the preprocessed input signal is equal to the sawtooth wave signal; a counting unit configured to count a number of clock signals while the sawtooth wave signal generating unit is generating the sawtooth wave signal and to transmit the counted number to the signal outputting unit; the signal outputting unit configured to, upon receipt of the pulse signal output from the signal comparing unit, output the number counted by the counting unit at the moment.
摘要:
Provided are a reconfigurable neuron device based on ion gate regulation and a method of preparing the same. The device includes: a synthetic antiferromagnetic layer, a metal oxide layer, an ionic liquid layer and a top electrode layer which are sequentially stacked from bottom to top. A left boundary antiferromagnetic layer and a right boundary antiferromagnetic layer having opposite magnetization directions are provided on two opposite edges of a bottom end of the synthetic antiferromagnetic layer, and a magnetic tunnel junction configured to output a spike signal is further provided in a middle portion of the bottom end of the synthetic antiferromagnetic layer. The metal oxide layer, the ionic liquid layer and the top electrode layer constitute an ion gate, the ionic liquid layer includes a positive ion and a negative ion.
摘要:
A method for collecting a signal with a frequency lower than a Nyquist frequency includes, by a data transmitting end, selecting a suitable transformation base matrix for an input signal, deriving a sparse representation of the signal using the transformation base matrix to determine a sparsity of the signal, calculating a number M of compressive sampling operations according to the sparsity, sampling the signal with fNYQ/M using M channels, and integrating sampling values of each channel to obtain M measurement values. A reconstruction end reconstructs an original signal by solving optimization problems. Based on theory, compressive sampling can be performed on a sparse signal or a signal represented in a sparse manner with a frequency much lower than the Nyquist frequency, overcoming restrictions of the typical Nyquist sampling theorem. The method can be implemented simply and decrease pressure on data collection, storage, transmission and processing.