Abstract:
Methods of performing time-of-day synchronization in a packet processing network include accumulating timestamps transmitted in packets between master and slave devices, which are synchronized to respective master and slave clocks and separated from each other by the packet processing network. Operations are also performed to determine whether first timestamps accumulated in a first direction across the packet network demonstrate that a first packet delay variation (PDV) sequence observed from the first timestamps is stationary. A phase offset between the master and slave clocks is then adjusted using a time-of-day (ToD) estimation algorithm. This adjusting can include evaluating a location-dependent statistic of the first PDV sequence.
Abstract:
Methods of packet-based synchronization in non-stationary network environments can include accumulating timestamps transmitted in packets between master and slave devices that are separated from each other by a packet network. Operations are also performed to determine whether first timestamps accumulated in a first direction across the packet network demonstrate that a first packet delay variation (PDV) sequence observed from the first timestamps is stationary. Thereafter, estimates of at least one of frequency skew and phase offset between the master and slave clocks are acquired using a first algorithm, from the first timestamps accumulated in the first direction. These operations of determining further include determining whether second timestamps accumulated in a second direction demonstrate that a second packet delay variation (PDV) sequence observed from the second timestamps is stationary.