Shadow Stack ISA Extensions to Support Fast Return and Event Delivery (FRED) Architecture

    公开(公告)号:US20210303304A1

    公开(公告)日:2021-09-30

    申请号:US16833599

    申请日:2020-03-28

    Abstract: An apparatus and method for efficiently managing shadow stacks. For example, one embodiment of a processor comprises: a plurality of registers to store a plurality of shadow stack pointers (SSPs), each SSP associated with a different event priority; event processing circuitry to select a first SSP of the plurality of SSPs from a first register of the plurality of registers responsive to receipt of a first event associated with a first event priority level, the first SSP usable to identify a top of a first shadow stack; verification and utilization checking circuitry to determine whether the first SSP has been previously verified, wherein if the first SSP has not been previously verified then initiating a set of atomic operations to verify the first SSP and confirm that the first SSP is not in use, the set of atomic operations using a locking operation to lock data until the set of atomic operations are complete, and wherein if the first SSP has been previously verified, then re-verifying the first SSP and confirming that the first SSP is not in use without using the locking operation.

    SHADOW STACK ISA EXTENSIONS TO SUPPORT FAST RETURN AND EVENT DELIVERY (FRED) ARCHITECTURE

    公开(公告)号:US20220171625A1

    公开(公告)日:2022-06-02

    申请号:US17590648

    申请日:2022-02-01

    Abstract: An apparatus and method for efficiently managing shadow stacks. For example, one embodiment of a processor comprises: a plurality of registers to store a plurality of shadow stack pointers (SSPs); event processing circuitry to select a first SSP of the plurality of SSPs from a first register of the plurality of registers responsive to receipt of a first event associated with a first event priority level, the first SSP usable to identify a top of a first shadow stack; verification and utilization checking circuitry to determine whether the first SSP has been previously verified, wherein if the first SSP has not been previously verified then initiating a set of atomic operations to verify the first SSP and confirm that the first SSP is not in use, the set of atomic operations using a locking operation to lock data until the set of atomic operations are complete.

Patent Agency Ranking