Abstract:
Apparatuses, methods and storage medium associated with automatic SATA receiver equalization margin determination and setting, are disclosed. In embodiments, an apparatus may comprise a BIOS configured to determine, during POST, whether a device is attached to one of the SATA ports, and on determination that a device is attached to one of the SATA ports, further determine whether a receiver equalization margin has been set for the device. Additionally, the BIOS may be configured to perform a DTLE training to dynamically determine and set the receiver equalization margin for the device, on determination that a receiver equalization margin has not been set for the device. Other embodiments may be described and/or claimed.
Abstract:
An embodiment includes an apparatus comprising: a rod-shaped substrate including a rod long axis; a first layer, including a first interconnect, substantially surrounding the substrate in a first plane that is orthogonal to the rod long axis; and a second layer, including a second interconnect, substantially surrounding the first layer in the first plane. Other embodiments are described herein.
Abstract:
An embodiment includes an apparatus comprising: a rod-shaped substrate including a rod long axis; a first layer, including a first interconnect, substantially surrounding the substrate in a first plane that is orthogonal to the rod long axis; and a second layer, including a second interconnect, substantially surrounding the first layer in the first plane. Other embodiments are described herein.
Abstract:
A printed circuit board (PCB) includes a dielectric plane and a ground plane parallel to and spaced apart from the dielectric plane. The dielectric plane includes a pair of signal traces and a 3-dimensional (3D) grounded (GND) fence located between the pair of signal traces. The 3D GND fence is electrically connected to the ground plane, and protrudes perpendicularly from the dielectric plane. The 3D GND fence is located equidistant from each of the pair of signal traces, and the 3D GND fence is configured to block electromagnetic interference (EMI) from a first of the pair of signal traces to a second of the pair of the signal traces. The pair of signal traces is configured to form part of a noise-sensitive electronic circuit. The 3D GND fence may have a rectangular configuration.