Abstract:
This application discussed trajectory modification techniques for polar transmission architectures. In an example, a method can include receiving a first sample, determining an absolute phase angle change between the first sample and a third sample, and if the first angle change is greater than a threshold phase angle, adjusting phase information of a second sample to provide a modified second sample such that a trajectory associated with the first sample, the modified second sample and the third sample passes through an origin. In an example, the second sample can be received prior to receiving the first sample, and the third sample can be received prior to receiving the second sample.
Abstract:
This application discussed trajectory modification techniques for polar transmission architectures. In an example, a method can include receiving a first sample, determining an absolute phase angle change between the first sample and a third sample, and if the first angle change is greater than a threshold phase angle, adjusting phase information of a second sample to provide a modified second sample such that a trajectory associated with the first sample, the modified second sample and the third sample passes through an origin. In an example, the second sample can be received prior to receiving the first sample, and the third sample can be received prior to receiving the second sample.
Abstract:
This application discussed trajectory modification techniques for polar transmission architectures. In an example, a method can include receiving a first sample, determining an absolute phase angle change between the first sample and a third sample, and if the first angle change is greater than a threshold phase angle, adjusting phase information of a second sample to provide a modified second sample such that a trajectory associated with the first sample, the modified second sample and the third sample passes through an origin. In an example, the second sample can be received prior to receiving the first sample, and the third sample can be received prior to receiving the second sample.
Abstract:
A circuit for generating a radio frequency signal includes an amplifier configured to provide a radio frequency signal, the radio frequency signal being based on a baseband signal and a power supply configured to provide a variable supply voltage to the amplifier. A predistortion circuit is configured to modify the baseband signal; and a control circuit configured to control an operation mode of the predistortion circuit depending on a bandwidth of a radius of the baseband signal.
Abstract:
This application discussed trajectory modification techniques for polar transmission architectures. In an example, a method can include receiving a first sample, determining an absolute phase angle change between the first sample and a third sample, and if the first angle change is greater than a threshold phase angle, adjusting phase information of a second sample to provide a modified second sample such that a trajectory associated with the first sample, the modified second sample and the third sample passes through an origin. In an example, the second sample can be received prior to receiving the first sample, and the third sample can be received prior to receiving the second sample.
Abstract:
This application discussed trajectory modification techniques for polar transmission architectures. In an example, a method can include receiving a first sample, determining an absolute phase angle change between the first sample and a third sample, and if the first angle change is greater than a threshold phase angle, adjusting phase information of a second sample to provide a modified second sample such that a trajectory associated with the first sample, the modified second sample and the third sample passes through an origin. In an example, the second sample can be received prior to receiving the first sample, and the third sample can be received prior to receiving the second sample.
Abstract:
A circuit for generating a radio frequency signal includes an amplifier configured to provide a radio frequency signal, the radio frequency signal being based on a baseband signal and a power supply configured to provide a variable supply voltage to the amplifier. A predistortion circuit is configured to modify the baseband signal; and a control circuit configured to control an operation mode of the predistortion circuit depending on a bandwidth of a radius of the baseband signal.
Abstract:
A method (100) for providing a baseband signal comprises monitoring (102) a disparity between a first magnitude of a first signal component (202) and a second magnitude of a second signal (204) component. If the disparity is below a threshold, the first signal component (202), the second signal component (204) or a combination of the first signal component (202) and the second signal component (204) is modified to provide a first modified signal component and a second modified signal component to increase the disparity between the magnitudes of the modified signal components above the threshold. The first modified signal component (202) and the second modified signal component (204) are combined to provide the baseband signal.