Abstract:
Systems can be configured for detecting license plates and recognizing characters in license plates. In an example, a system can receive an image and identify one or more regions in the image that include a license plate. Character recognition can be performed in the one or more regions to determine contents of a candidate license plate. Location-specific information about a license plate format can be used together with the determined contents of the candidate license plate to determine if the recognized characters are valid.
Abstract:
Artificial intelligence-based processing can be used to classify audio information received from an audio input unit. In an example, audio information can be received from a microphone configured to monitor an environment. A processor circuit can identify identifying one or more features of the audio information received from the microphone and use a first applied machine learning algorithm to analyze the one or more features and determine whether the audio information includes an indication of an abnormal event in the environment. In an example, the processor circuit can use a different second applied machine learning algorithm, such as a neural network-based deep learning algorithm, to analyze the same one or more features and classify the audio information as including an indication of a particular event type in the environment.
Abstract:
The present invention discloses methods and systems for recognizing an object in an input image based on stored training images. An object recognition system the input image, computes a signature of the input image, compares the signature with one or more stored signatures and retrieves one or more matching images from the set of training images. The matching images are then displayed to the user for further action.
Abstract:
Method of tracking moveable objects (typically tagged objects that are moved by actors e.g. people, vehicles) by combining and analyzing data obtained from multiple types of sensors, such as video cameras, RFID tag readers, GPS sensors, and WiFi transceivers. Objects may be tagged by RFID tags, NFC tags, bar codes, or even tagged by visual appearance. The system operates in near real-time, and compensates for errors in sensor readings and missing sensor data by modeling object and actor movement according to a plurality of possible paths, weighting data from some sensors higher than others according to estimates of sensor accuracy, and weighing the probability of certain paths according to various other rules and penalty cost parameters. The system can maintain a comprehensive database which can be queried as to which actors associate with which objects, and vice versa. Other data pertaining to object location and association can also be obtained.
Abstract:
Systems can be configured for detecting license plates and recognizing characters in license plates. In an example, a system can receive an image and identify one or more regions in the image that include a license plate. Character recognition can be performed in the one or more regions to determine contents of a candidate license plate. Location-specific information about a license plate format can be used together with the determined contents of the candidate license plate to determine if the recognized characters are valid.
Abstract:
A system and method for detecting human presence in or absence from a field-of-view of a camera by analyzing camera data using a processor inside of or adjacent to the camera itself. In an example, the camera can be integrated with or embedded in another edge-based sensor device. In an example, a video signal processing system receives image data from one or more image sensors and uses a local processing circuit to process the image data and determine if a human being is or is not present during a particular time, interval, or sequence of frames. In an example, the human being identification technique can be used in security or surveillance applications such as for home, business, or other monitoring cameras.
Abstract:
Artificial intelligence-based processing can be used to classify audio information received from an audio input unit. In an example, audio information can be received from a microphone configured to monitor an environment. A processor circuit can identify identifying one or more features of the audio information received from the microphone and use a first applied machine learning algorithm to analyze the one or more features and determine whether the audio information includes an indication of an abnormal event in the environment. In an example, the processor circuit can use a different second applied machine learning algorithm, such as a neural network-based deep learning algorithm, to analyze the same one or more features and classify the audio information as including an indication of a particular event type in the environment.
Abstract:
Systems can be configured for detecting license plates and recognizing characters in license plates. In an example, a system can receive an image and identify one or more regions in the image that include a license plate. Character recognition can be performed in the one or more regions to determine contents of a candidate license plate. Location-specific information about a license plate format can be used together with the determined contents of the candidate license plate to determine if the recognized characters are valid.
Abstract:
The present invention discloses methods, systems and computer programmable products for detecting license plates and recognizing characters in the license plates. The system receives an image and identifies one or more regions including a license plate. The one or more regions are converted into a plurality of binarized images, which are then filtered to remove noise. Next, one or more clusters of characters are identified in the plurality of binarized images. The one or more clusters of characters are analyzed to recognize a set of characters, wherein each character in the set includes a confidence value.
Abstract:
Method of tracking moveable objects (typically tagged objects that are moved by actors e.g. people, vehicles) by combining and analyzing data obtained from multiple types of sensors, such as video cameras, RFID tag readers, GPS sensors, and WiFi transceivers. Objects may be tagged by RFID tags, NFC tags, bar codes, or even tagged by visual appearance. The system operates in near real-time, and compensates for errors in sensor readings and missing sensor data by modeling object and actor movement according to a plurality of possible paths, weighting data from some sensors higher than others according to estimates of sensor accuracy, and weighing the probability of certain paths according to various other rules and penalty cost parameters. The system can maintain a comprehensive database which can be queried as to which actors associate with which objects, and vice versa. Other data pertaining to object location and association can also be obtained.