Abstract:
A method for spoken term detection, comprising generating a time-marked word list, wherein the time-marked word list is an output of an automatic speech recognition system, generating an index from the time-marked word list, wherein generating the index comprises creating a word loop weighted finite state transducer for each utterance, i, receiving a plurality of keyword queries, and searching the index for a plurality of keyword hits.
Abstract:
An approach is provided that receives an audio stream and utilizes a voice activation detection (VAD) process to create a digital audio stream of voices from at least two different speakers. An automatic speech recognition (ASR) process is applied to the digital stream with the ASR process resulting in the spoken words to which a speaker turn detection (STD) process is applied to identify a number of speaker segments with each speaker segment ending at a word boundary. The STD process analyzes a number of speaker segments using a language model that determines when speaker changes occur. A speaker clustering algorithm is then applied to the speaker segments to associate one of the speakers with each of the speaker segments.
Abstract:
Systems and methods for training networks are provided. A method for training networks comprises receiving an input from each of a plurality of neural networks differing from each other in at least one of architecture, input modality, and feature type, connecting the plurality of neural networks through a common output layer, or through one or more common hidden layers and a common output layer to result in a joint network, and training the joint network.
Abstract:
A method includes providing a deep neural network acoustic model, receiving audio data including one or more utterances of a speaker, extracting a plurality of speech recognition features from the one or more utterances of the speaker, creating a speaker identity vector for the speaker based on the extracted speech recognition features, and adapting the deep neural network acoustic model for automatic speech recognition using the extracted speech recognition features and the speaker identity vector.
Abstract:
Techniques for augmenting the output of generally available speech-to-text systems using local profiles are presented. An example method includes receiving an audio recording of a natural language command. The received audio recording of the natural language command is transmitted to a speech-to-text system, and a text string generated from the audio recording is received from the speech-to-text system. The text string is corrected based on a local profile mapping incorrectly transcribed words from the speech-to-text system to corrected words. A function in a software application is invoked based on the corrected text string.
Abstract:
An approach is provided that receives an audio stream and utilizes a voice activation detection (VAD) process to create a digital audio stream of voices from at least two different speakers. An automatic speech recognition (ASR) process is applied to the digital stream with the ASR process resulting in the spoken words to which a speaker turn detection (STD) process is applied to identify a number of speaker segments with each speaker segment ending at a word boundary. A speaker clustering algorithm is then applied to the speaker segments to associate one of the speakers with each of the speaker segments.
Abstract:
An approach is provided that receives an audio stream and utilizes a voice activation detection (VAD) process to create a digital audio stream of voices from at least two different speakers. An automatic speech recognition (ASR) process is applied to the digital stream with the ASR process resulting in the spoken words to which a speaker turn detection (STD) process is applied to identify a number of speaker segments with each speaker segment ending at a word boundary. The STD process analyzes a number of speaker segments using a language model that determines when speaker changes occur. A speaker clustering algorithm is then applied to the speaker segments to associate one of the speakers with each of the speaker segments.
Abstract:
An approach is provided that receives an audio stream and utilizes a voice activation detection (VAD) process to create a digital audio stream of voices from at least two different speakers. An automatic speech recognition (ASR) process is applied to the digital stream with the ASR process resulting in the spoken words to which a speaker turn detection (STD) process is applied to identify a number of speaker segments with each speaker segment ending at a word boundary. A speaker clustering algorithm is then applied to the speaker segments to associate one of the speakers with each of the speaker segments.
Abstract:
Systems and methods for training networks are provided. A method for training networks comprises receiving an input from each of a plurality of neural networks differing from each other in at least one of architecture, input modality, and feature type, connecting the plurality of neural networks through a common output layer, or through one or more common hidden layers and a common output layer to result in a joint network, and training the joint network.
Abstract:
Systems and methods for training networks are provided. A method for training networks comprises receiving an input from each of a plurality of neural networks differing from each other in at least one of architecture, input modality, and feature type, connecting the plurality of neural networks through a common output layer, or through one or more common hidden layers and a common output layer to result in a joint network, and training the joint network.