Abstract:
Robotic surgery systems include a floor supported surgical robot with offset links. A robotic surgery system includes a surgical robot and a control system. The surgical robot includes a manipulator and a floor/pedestal mount. The manipulator includes a mounting base, a yaw joint, an offset extension link, a parallelogram linkage assembly, and an instrument holder. The floor/pedestal mount is configured for supporting the mounting base in a fixed position and orientation relative to a patient and includes set-up joints operable to reposition and reorient the mounting base to reposition a remote center of manipulation relative to the patient prior to conducting surgery on the patient via the manipulator. The manipulator includes offset links. The control system is configured to electronically communicate with and control operation of the manipulator to articulate a surgical instrument during surgery.
Abstract:
A surgical system includes a manipulator, a surgical tool and a control system. The manipulator includes a manipulator mounting base, a pitch mechanism, a roll mechanism and a redundant rotation mechanism. The surgical tool is supported by the manipulator and has a tool shaft axis. The pitch mechanism rotates the surgical tool around a pitch axis. The roll mechanism rotates the surgical tool around a roll axis transverse to the pitch axis. The redundant rotation mechanism rotates the surgical tool around a redundant rotation axis. Each of the tool shaft axis, the pitch axis and the roll axis intersect at a remote center. The control system is configured to electronically communicate with and control operation of the manipulator to articulate the surgical tool during surgery.
Abstract:
A remote center manipulator for use in minimally invasive robotic surgery includes a base link held stationary relative to a patient, an instrument holder, and a linkage coupling the instrument holder to the base link. First and second links of the linkage are coupled to limit motion of the second link to rotation about a first axis intersecting a remote center of manipulation. A parallelogram linkage portion of the linkage pitches the instrument holder around a second axis that intersects the remote center of manipulation. The second axis is angularly offset from the first axis by a non-zero angle other than 90 degrees.
Abstract:
A remote center manipulator for use in minimally invasive robotic surgery includes a base link held stationary relative to a patient, an instrument holder, and a linkage coupling the instrument holder to the base link. First and second links of the linkage are coupled to limit motion of the second link to rotation about a first axis intersecting a remote center of manipulation. A parallelogram linkage portion of the linkage pitches the instrument holder around a second axis that intersects the remote center of manipulation. The second axis is not coincident with the first axis. Third and fourth links of the linkage are coupled to limit motion of the fourth link to rotation about a third axis intersecting the remote center of manipulation. The third axis is not coincident with either of the first and second axes. Various combinations of hardware-constrained remote center of motion robotic manipulators with redundant mechanical degrees of freedom are disclosed.
Abstract:
A remote center manipulator for use in minimally invasive robotic surgery includes a base link held stationary relative to a patient, an instrument holder, and a linkage coupling the instrument holder to the base link. First and second links of the linkage are coupled to limit motion of the second link to rotation about a first axis intersecting a remote center of manipulation. A parallelogram linkage portion of the linkage pitches the instrument holder around a second axis that intersects the remote center of manipulation. The second axis is angularly offset from the first axis by a non-zero angle other than 90 degrees.
Abstract:
A remote center manipulator for use in minimally invasive robotic surgery includes a base link held stationary relative to a patient, an instrument holder, and a linkage coupling the instrument holder to the base link. First and second links of the linkage are coupled to limit motion of the second link to rotation about a first axis intersecting a remote center of manipulation. A parallelogram linkage portion of the linkage pitches the instrument holder around a second axis that intersects the remote center of manipulation. The second axis is angularly offset from the first axis by a non-zero angle other than 90 degrees.
Abstract:
A remote center manipulator for use in minimally invasive robotic surgery includes a base link held stationary relative to a patient, an instrument holder, and a linkage coupling the instrument holder to the base link. First and second links of the linkage are coupled to limit motion of the second link to rotation about a first axis intersecting a remote center of manipulation. A parallelogram linkage portion of the linkage pitches the instrument holder around a second axis that intersects the remote center of manipulation. The second axis is angularly offset from the first axis by a non-zero angle other than 90 degrees.
Abstract:
A remote center manipulator for use in minimally invasive robotic surgery includes a base link held stationary relative to a patient, an instrument holder, and a linkage coupling the instrument holder to the base link. First and second links of the linkage are coupled to limit motion of the second link to rotation about a first axis intersecting a remote center of manipulation. A parallelogram linkage portion of the linkage pitches the instrument holder around a second axis that intersects the remote center of manipulation. The second axis is angularly offset from the first axis by a non-zero angle other than 90 degrees.
Abstract:
A surgical system includes a manipulator, a surgical tool and a control system. The manipulator includes a manipulator mounting base, a pitch mechanism, a roll mechanism and a redundant rotation mechanism. The surgical tool is supported by the manipulator and has a tool shaft axis. The pitch mechanism rotates the surgical tool around a pitch axis. The roll mechanism rotates the surgical tool around a roll axis transverse to the pitch axis. The redundant rotation mechanism rotates the surgical tool around a redundant rotation axis. Each of the tool shaft axis, the pitch axis and the roll axis intersect at a remote center. The control system is configured to electronically communicate with and control operation of the manipulator to articulate the surgical tool during surgery.
Abstract:
A remote center manipulator for use in minimally invasive robotic surgery includes a base link held stationary relative to a patient, an instrument holder, and a linkage coupling the instrument holder to the base link. First and second links of the linkage are coupled to limit motion of the second link to rotation about a first axis intersecting a remote center of manipulation. A parallelogram linkage portion of the linkage pitches the instrument holder around a second axis that intersects the remote center of manipulation. The second axis is not coincident with the first axis. Third and fourth links of the linkage are coupled to limit motion of the fourth link to rotation about a third axis intersecting the remote center of manipulation. The third axis is not coincident with either of the first and second axes. Various combinations of hardware-constrained remote center of motion robotic manipulators with redundant mechanical degrees of freedom are disclosed.