摘要:
A network-based system is provided for performing data analysis services using a support vector machine for analyzing data received from a remote user connected to the network. The user transmits a data set to be analyzed and along with an account identifier that allows the analysis service provider to collect payment for the processing services. Once payment has been confirmed, the service provider's server transmits the analysis results to the remote user.
摘要:
A system and method are provided for diagnosing diseases or conditions from digital images taken by a remote user with a smart phone or a digital camera and transmitted to an image analysis server in communication with a distributed network. The image analysis server includes a trained learning machine for classification of the images. The user-provided image is pre-processed to extract dimensional, shape and color features then is processed using the trained learning machine to classify the image. The classification result is postprocessed to generate a risk score that is transmitted to the remote user. A database associated with the server may include referral information for geographically matching the remote user with a local physician. An optional operation includes collection of financial information to secure payment for analysis services.
摘要:
A system and method are provided for diagnosing diseases or conditions from digital images taken by a remote user with a smart phone or a digital camera and transmitted to an image analysis server in communication with a distributed network. The image analysis server includes a trained learning machine for classification of the images. The user-provided image is pre-processed to extract dimensional, shape and color features then is processed using the trained learning machine to classify the image. The classification result is postprocessed to generate a risk score that is transmitted to the remote user. A database associated with the server may include referral information for geographically matching the remote user with a local physician. An optional operation includes collection of financial information to secure payment for analysis services.
摘要:
Digitized image data are input into a processor where a detection component identifies the areas (objects) of particular interest in the image and, by segmentation, separates those objects from the background. A feature extraction component formulates numerical values relevant to the classification task from the segmented objects. Results of the preceding analysis steps are input into a trained learning machine classifier which produces an output which may consist of an index discriminating between two possible diagnoses, or some other output in the desired output format. In one embodiment, digitized image data are input into a plurality of subsystems, each subsystem having one or more support vector machines. Pre-processing may include the use of known transformations which facilitate extraction of the useful data. Each subsystem analyzes the data relevant to a different feature or characteristic found within the image. Once each subsystem completes its analysis and classification, the output for all subsystems is input into an overall support vector machine analyzer which combines the data to make a diagnosis, decision or other action which utilizes the knowledge obtained from the image.
摘要:
The simultaneous multi access reasoning technology system of the present invention utilizes both existing knowledge and implicit information that can be numerically extracted from training data to provide a method and apparatus for diagnosing disease and treating a patient. This technology further comprises a system for receiving patient data from another location, analyzing the data in a trained neural network, producing a diagnostic value, and optionally transmitting the diagnostic value to another location.
摘要:
A system and method for enhancing knowledge discovery from data using multiple learning machines in general and multiple support vector machines in particular. Training data for a learning machine is pre-processed in order to add meaning thereto. Pre-processing data involves transforming the data points and/or expanding the data points. By adding meaning to the data, the learning machine is provided with a greater amount of information for processing. With regard to support vector machines in particular, the greater the amount of information that is processed, the better generalizations about the derived data. Multiple support vector machines, each comprising distinct kernels, are trained with the pre-processed training data and are tested with test data that is pre-processed in the same manner. The test outputs from multiple support vector machines are compared in order to determine which of the test outputs if any represents a optimal solution. Selection of one or more kernels is to be adjusted and one or more support vector machines is to be retrained and retested. When it is determined that an optimal solution has been achieved, live data is pre-processed and input into the support vector machine comprising the kernel that produced the optimal solution. The live output from the learning machine is post-processed into a computationally derived alphanumerical classifier for interpretation by a human or computer automated process.
摘要:
Digitized image data are input into a processor where a detection component identifies the areas (objects) of particular interest in the image and, by segmentation, separates those objects from the background. A feature extraction component formulates numerical values relevant to the classification task from the segmented objects. Results of the preceding analysis steps are input into a trained learning machine classifier which produces an output which may consist of an index discriminating between two possible diagnoses, or some other output in the desired output format. In one embodiment, digitized image data are input into a plurality of subsystems, each subsystem having one or more support vector machines. Pre-processing may include the use of known transformations which facilitate extraction of the useful data. Each subsystem analyzes the data relevant to a different feature or characteristic found within the image. Once each subsystem completes its analysis and classification, the output for all subsystems is input into an overall support vector machine analyzer which combines the data to make a diagnosis, decision or other action which utilizes the knowledge obtained from the image.
摘要:
The diagnostic method of the present invention provides a method of diagnosing prostate cancer by measuring the concentration of prostate specific antigen and creatine kinase enzyme activity. A mathematical relationship between the two concentrations is then determined. If the prostate specific antigen concentration in the blood is normal or near normal and the creatine kinase enzyme value is lower than normal, than there is a high likelihood that the patient has prostate cancer. The present invention also includes the measurement of creatine kinase enzyme inhibitor in the serum of a patient to determine if the patient has a high likelihood of cancer.
摘要:
A system and method for enhancing knowledge discovery from data using a learning machine in general and a support vector machine in particular in a distributed network environment. A customer may transmit training data, test data and live data to a vendor's server from a remote source, via a distributed network. The customer may also transmit to the server identification information such as a user name, a password and a financial account identifier. The training data, test data and live data may be stored in a storage device. Training data may then be pre-processed in order to add meaning thereto. Pre-processing data may involve transforming the data points and/or expanding the data points. By adding meaning to the data, the learning machine is provided with a greater amount of information for processing. With regard to support vector machines in particular, the greater the amount of information that is processed, the better generalizations about the data that may be derived. The learning machine is therefore trained with the pre-processed training data and is tested with test data that is pre-processed in the same manner. The test output from the learning machine is post-processed in order to determine if the knowledge discovered from the test data is desirable. Post-processing involves interpreting the test output into a format that may be compared with the test data. Live data is pre-processed and input into the trained and tested learning machine. The live output from the learning machine may then be post-processed into a computationally derived alphanumerical classifier for interpretation by a human or computer automated process. Prior to transmitting the alpha numerical classifier to the customer via the distributed network, the server is operable to communicate with a financial institution for the purpose of receiving funds from a financial account of the customer identified by the financial account identifier.
摘要:
The simultaneous multi access reasoning technology system of the present invention utilizes both existing knowledge and implicit information that can be numerically extracted from training data to provide a method and apparatus for diagnosing disease and treating a patient. This technology further comprises a system for receiving patient data from another location, analyzing the data in a trained neural network, producing a diagnostic value, and optionally transmitting the diagnostic value to another location.