摘要:
The invention relates to biochemically pure oligopeptides having stimulatory activity on osteoblastic and/or fibroblastic cells having a molecular weight between 200 and 2,000. Preferred oligopeptides according to the invention comprise the amino acid sequences Tyr-Gly-Phe-His-Gly (SEQ.ID.No.2) and Gly-Phe-Gly-Gly (SEQ.ID.No.3). The invention further relates to pharmaceutical compositions for the stimulation of formation of osteoblastic or fibroblastic cells, enhanced bone formation in osteogenic pathological conditions, fracture repair, healing of wounds, intraosseous implants and bone supplementation, or other conditions requiring enhanced bone formation cells comprising a therapeutically effective amount of an oligopeptide according to the invention.
摘要:
The invention relates to synthetic pseudopeptide derivatives of osteogenic grog polypeptide (OGP) and OGP(10-14) which may be linear or cyclic, and which are capable of enhancing bone cell proliferation and bone formation. Further, the present invention relates to pharmaceutical composition comprising as active ingredient at least one pseudopeptide derivative of the invention and to the use of these pseudopeptide derivatives in the preparation of a pharmaceutical composition for stimulating the formation of osteoblastic or fibroblastic cells, enhancing bone formation in osteopenic pathological conditions, repairing fractures, healing wounds, grafting of intraosseous implants, reversing bone loss in osteoporosis and other conditions requiring enhanced bone cells formation.
摘要:
Cyclic to Synthetic pseudopeptide derivatives of osteogenic growth polypeptide (OGP) and OGP(10-14) which are capable of enhancing bone cell proliferation and bone formation. Pharmaceutical composition comprising as active ingredient at least one pseudopeptide derivative of the invention and to the use of these pseudopeptide derivatives in the preparation of a pharmaceutical composition for stimulating the formation of osteoblastic or fibroblastic cells, enhancing bone formation in osteopenic pathological conditions, repairing fractures, healing wounds, grafting of intraosseous implants, reversing bone loss in osteoporosis and other conditions requiring enhanced bone cells formation.