摘要:
In some embodiments, the invention is a personal digital network (“PDN”) including hardware (sometimes referred to as Ingress circuitry) configured to transcrypt encrypted content that enters the PDN. Typically, the transcryption (decryption followed by re-encryption) is performed in hardware within the Ingress circuitry and the re-encryption occurs before the decrypted content is accessible by hardware or software external to the Ingress circuitry. Typically, transcrypted content that leaves the Ingress circuitry remains in re-encrypted form within the PDN whenever it is transferred between integrated circuits or is otherwise easily accessible by software, until it is decrypted within hardware (sometimes referred to as Egress circuitry) for display or playback or output from the PDN. Typically, the PDN is implemented so that no secret in Ingress or Egress circuitry (for use or transfer by the Ingress or Egress circuitry) is accessible in unencrypted form to software or firmware within the PDN or to any entity external to the PDN. Other aspects of the invention are methods for protecting content in a PDN (e.g., an open computing system) and devices (e.g., multimedia graphics cards, set top boxes, or video processors) for use in a PDN.
摘要:
In some embodiments, the invention is a personal digital network (“PDN”) including hardware (sometimes referred to as Ingress circuitry) configured to transcrypt encrypted content that enters the PDN. Typically, the transcryption (decryption followed by re-encryption) is performed in hardware within the Ingress circuitry and the re-encryption occurs before the decrypted content is accessible by hardware or software external to the Ingress circuitry. Typically, transcrypted content that leaves the Ingress circuitry remains in re-encrypted form within the PDN whenever it is transferred between integrated circuits or is otherwise easily accessible by software, until it is decrypted within hardware (sometimes referred to as Egress circuitry) for display or playback or output from the PDN. Typically, the PDN is implemented so that no secret in Ingress or Egress circuitry (for use or transfer by the Ingress or Egress circuitry) is accessible in unencrypted form to software or firmware within the PDN or to any entity external to the PDN. Other aspects of the invention are methods for protecting content in a PDN (e.g., an open computing system) and devices (e.g., multimedia graphics cards, set top boxes, or video processors) for use in a PDN.
摘要:
A cable including circuitry for asserting information to a user or external device and a system including such a cable. The cable can include conductors, a memory storing cable data, and circuitry configured to respond to a request received on at least one of the conductors by accessing at least some of the cable data and asserting the accessed data serially to at least one of the conductors (e.g., for transmission to an external device). Other aspects of the invention are methods for accessing cable data stored in a cable and optionally using the data (e.g., to implement equalization). The cable data can be indicative of all or some of cable type, grade, speed, length, and impedance, a date code, a frequency-dependent attenuation table, far-end crosstalk and EMI-related coefficients, common mode radiation, intra pair skew, and other information. The cable can include a radiation-emitting element and circuitry for generating driving signals for causing the radiation-emitting element to produce an appropriate color, brightness, and/or blinking pattern.
摘要:
A cable including circuitry for asserting information to a user or external device and a system including such a cable. The cable can include conductors, a memory storing cable data, and circuitry configured to respond to a request received on at least one of the conductors by accessing at least some of the cable data and asserting the accessed data serially to at least one of the conductors (e.g., for transmission to an external device). Other aspects of the invention are methods for accessing cable data stored in a cable and optionally using the data (e.g., to implement equalization). The cable data can be indicative of all or some of cable type, grade, speed, length, and impedance, a date code, a frequency-dependent attenuation table, far-end crosstalk and EMI-related coefficients, common mode radiation, intra pair skew, and other information. The cable can include a radiation-emitting element and circuitry for generating driving signals for causing the radiation-emitting element to produce an appropriate color, brightness, and/or blinking pattern.
摘要:
In the DSCH power control method for mobile communication system according to the present invention, the cell transmitting DSCH receives a signal from an UE, determines whether a cell transmitting DSCH to be set as primary or non-primary based on the received signal, and controls DSCH transmit power according to a result of the determination. The cell decreases DSCH transmit power when the cell is set as primary and increases DSCH transmit power when the cell is set as non-primary. In the DSCH transmit power control method of the present invention the cell transmitting DSCH sets its state as non-primary when the received signal quality is bad, such that it is possible to prevent the cell transmitting the DSCH from reducing the DSCH transmit power even when the received signal quality is bad, unlike in the typical SSDT.
摘要:
The present application describes a composition that includes an extract of Gynostemma pentaphyllum used to treat insulin resistance syndrome, obesity, hypertriglyceridemia, as well as decrease body fat mass.